BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26589507)

  • 21. PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania.
    Nadhman A; Nazir S; Khan MI; Arooj S; Bakhtiar M; Shahnaz G; Yasinzai M
    Free Radic Biol Med; 2014 Dec; 77():230-8. PubMed ID: 25266330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro.
    Qiao XF; Zhou JC; Xiao JW; Wang YF; Sun LD; Yan CH
    Nanoscale; 2012 Aug; 4(15):4611-23. PubMed ID: 22706800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multifunctional AS1411-functionalized fluorescent gold nanoparticles for targeted cancer cell imaging and efficient photodynamic therapy.
    Ai J; Xu Y; Lou B; Li D; Wang E
    Talanta; 2014 Jan; 118():54-60. PubMed ID: 24274270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells.
    Liu Q; Xu L; Zhang X; Li N; Zheng J; Guan M; Fang X; Wang C; Shu C
    Chem Asian J; 2013 Oct; 8(10):2370-6. PubMed ID: 23907978
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy.
    Jiang C; Cheng H; Yuan A; Tang X; Wu J; Hu Y
    Acta Biomater; 2015 Mar; 14():61-9. PubMed ID: 25463484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heavy-atomic construction of photosensitizer nanoparticles for enhanced photodynamic therapy of cancer.
    Lim CK; Shin J; Lee YD; Kim J; Park H; Kwon IC; Kim S
    Small; 2011 Jan; 7(1):112-8. PubMed ID: 21132707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoparticles in photodynamic therapy: an emerging paradigm.
    Chatterjee DK; Fong LS; Zhang Y
    Adv Drug Deliv Rev; 2008 Dec; 60(15):1627-37. PubMed ID: 18930086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multifunctional core-shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells.
    Zhao Z; Han Y; Lin C; Hu D; Wang F; Chen X; Chen Z; Zheng N
    Chem Asian J; 2012 Apr; 7(4):830-7. PubMed ID: 22279027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system.
    Lee SJ; Koo H; Lee DE; Min S; Lee S; Chen X; Choi Y; Leary JF; Park K; Jeong SY; Kwon IC; Kim K; Choi K
    Biomaterials; 2011 Jun; 32(16):4021-9. PubMed ID: 21376388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An upconversion nanoparticle--Zinc phthalocyanine based nanophotosensitizer for photodynamic therapy.
    Xia L; Kong X; Liu X; Tu L; Zhang Y; Chang Y; Liu K; Shen D; Zhao H; Zhang H
    Biomaterials; 2014 Apr; 35(13):4146-56. PubMed ID: 24529625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MC540 and upconverting nanocrystal coloaded polymeric liposome for near-infrared light-triggered photodynamic therapy and cell fluorescent imaging.
    Wang H; Liu Z; Wang S; Dong C; Gong X; Zhao P; Chang J
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3219-25. PubMed ID: 24511877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles.
    Wang C; Tao H; Cheng L; Liu Z
    Biomaterials; 2011 Sep; 32(26):6145-54. PubMed ID: 21616529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway.
    Hou Z; Zhang Y; Deng K; Chen Y; Li X; Deng X; Cheng Z; Lian H; Li C; Lin J
    ACS Nano; 2015 Mar; 9(3):2584-99. PubMed ID: 25692960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photodynamic therapy: one step ahead with self-assembled nanoparticles.
    Avci P; Erdem SS; Hamblin MR
    J Biomed Nanotechnol; 2014 Sep; 10(9):1937-52. PubMed ID: 25580097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anticancer efficacy of photodynamic therapy with hematoporphyrin-modified, doxorubicin-loaded nanoparticles in liver cancer.
    Chang JE; Yoon IS; Sun PL; Yi E; Jheon S; Shim CK
    J Photochem Photobiol B; 2014 Nov; 140():49-56. PubMed ID: 25090224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Semiconductor quantum dots for photodynamic therapy.
    Samia AC; Chen X; Burda C
    J Am Chem Soc; 2003 Dec; 125(51):15736-7. PubMed ID: 14677951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactive oxygen-dependent production of novel photochemotherapeutic agents.
    Pervaiz S
    FASEB J; 2001 Mar; 15(3):612-7. PubMed ID: 11259379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inorganic Nanoparticles for Image-Guided Therapy.
    Yoon HY; Jeon S; You DG; Park JH; Kwon IC; Koo H; Kim K
    Bioconjug Chem; 2017 Jan; 28(1):124-134. PubMed ID: 27788580
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells.
    Chatterjee DK; Yong Z
    Nanomedicine (Lond); 2008 Feb; 3(1):73-82. PubMed ID: 18393642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Use of Inorganic Compounds in Photodynamic Therapy: Improvements in Methods and Photosensitizer Design.
    Boodram S; Bullock JL; Rambaran VH; Holder AA
    Recent Pat Nanotechnol; 2016 Feb; 11(1):3 - 14. PubMed ID: 27108692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.