These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26589507)

  • 61. Importance of Rose Bengal Loaded with Nanoparticles for Anti-Cancer Photodynamic Therapy.
    Dhaini B; Wagner L; Moinard M; Daouk J; Arnoux P; Schohn H; Schneller P; Acherar S; Hamieh T; Frochot C
    Pharmaceuticals (Basel); 2022 Aug; 15(9):. PubMed ID: 36145315
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Developments in PDT Sensitizers for Increased Selectivity and Singlet Oxygen Production.
    Mehraban N; Freeman HS
    Materials (Basel); 2015 Jul; 8(7):4421-4456. PubMed ID: 28793448
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Recent advances in nanoparticle carriers for photodynamic therapy.
    Yi G; Hong SH; Son J; Yoo J; Park C; Choi Y; Koo H
    Quant Imaging Med Surg; 2018 May; 8(4):433-443. PubMed ID: 29928608
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Combination of Two Photosensitisers in Anticancer, Antimicrobial and Upconversion Photodynamic Therapy.
    Mušković M; Pokrajac R; Malatesti N
    Pharmaceuticals (Basel); 2023 Apr; 16(4):. PubMed ID: 37111370
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs.
    Yin R; Agrawal T; Khan U; Gupta GK; Rai V; Huang YY; Hamblin MR
    Nanomedicine (Lond); 2015; 10(15):2379-404. PubMed ID: 26305189
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nanoformulation of Tetrapyrroles Derivatives in Photodynamic Therapy: A Focus on Bacteriochlorin.
    Pallavi P; Harini K; Anand Arumugam V; Gowtham P; Girigoswami K; Muthukrishnan S; Girigoswami A
    Evid Based Complement Alternat Med; 2022; 2022():3011918. PubMed ID: 36212948
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bimetallic nanoparticles enhance photoactivity of conjugated photosensitizer.
    Magalhães JA; Fernandes AU; Junqueira HC; Nunes BC; Cursino TAF; Formaggio DMD; da S Baptista M; Tada DB
    Nanotechnology; 2020 Feb; 31(9):095102. PubMed ID: 31703225
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Physiologically Based Pharmacokinetic Model for Long-Circulating Inorganic Nanoparticles.
    Liang X; Wang H; Grice JE; Li L; Liu X; Xu ZP; Roberts MS
    Nano Lett; 2016 Feb; 16(2):939-45. PubMed ID: 26771694
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In vivo degeneration and the fate of inorganic nanoparticles.
    Feliu N; Docter D; Heine M; Del Pino P; Ashraf S; Kolosnjaj-Tabi J; Macchiarini P; Nielsen P; Alloyeau D; Gazeau F; Stauber RH; Parak WJ
    Chem Soc Rev; 2016 May; 45(9):2440-57. PubMed ID: 26862602
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Self-assembled liposomal nanoparticles in photodynamic therapy.
    Sadasivam M; Avci P; Gupta GK; Lakshmanan S; Chandran R; Huang YY; Kumar R; Hamblin MR
    Eur J Nanomed; 2013 Jul; 5(3):. PubMed ID: 24348377
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Singlet Oxygen Generation by Laser Irradiation of Gold Nanoparticles.
    Chadwick SJ; Salah D; Livesey PM; Brust M; Volk M
    J Phys Chem C Nanomater Interfaces; 2016 May; 120(19):10647-10657. PubMed ID: 27239247
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Residence time of singlet oxygen in membranes.
    Sokolov VS; Batishchev OV; Akimov SA; Galimzyanov TR; Konstantinova AN; Malingriaux E; Gorbunova YG; Knyazev DG; Pohl P
    Sci Rep; 2018 Sep; 8(1):14000. PubMed ID: 30228297
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Novel one pot synthesis and spectroscopic characterization of a folate-Mn
    Mondal S; Adhikari A; Das M; Darbar S; Alharbi A; Ahmed SA; Bhattacharya SS; Pal D; Pal SK
    RSC Adv; 2019 Sep; 9(52):30216-30225. PubMed ID: 35530237
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Multifunctional organic nanoparticles with aggregation-induced emission (AIE) characteristics for targeted photodynamic therapy and RNA interference therapy.
    Jin G; Feng G; Qin W; Tang BZ; Liu B; Li K
    Chem Commun (Camb); 2016 Feb; 52(13):2752-5. PubMed ID: 26759835
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Isotopic analysis of oxygen in inorganic compounds.
    ANBAR M; GUTTMANN S
    Int J Appl Radiat Isot; 1959 May; 5(3):233-5. PubMed ID: 13664359
    [No Abstract]   [Full Text] [Related]  

  • 76. Describing inorganic nanoparticles in the context of surface reactivity and catalysis.
    Carenco S
    Chem Commun (Camb); 2018 Jun; 54(50):6719-6727. PubMed ID: 29850751
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nanoparticles for Advanced Photodynamic Therapy of Cancer.
    Abrahamse H; Kruger CA; Kadanyo S; Mishra A
    Photomed Laser Surg; 2017 Nov; 35(11):581-588. PubMed ID: 28937916
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Diagnostic and Therapeutic Applications of Quantum Dots in Nanomedicine.
    Kamila S; McEwan C; Costley D; Atchison J; Sheng Y; Hamilton GR; Fowley C; Callan JF
    Top Curr Chem; 2016; 370():203-24. PubMed ID: 26589510
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Efficacy of Zinc Phthalocyanine Nanoconjugate on Melanoma Cells Grown as Three-Dimensional Multicellular Tumour Spheroids.
    Nkune NW; Abrahamse H
    Pharmaceutics; 2023 Aug; 15(9):. PubMed ID: 37765232
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Recent Progress of Gold-Based Nanostructures towards Future Emblem of Photo-Triggered Cancer Theranostics: A Special Focus on Combinatorial Phototherapies.
    Sekar R; Basavegowda N; Thathapudi JJ; Sekhar MR; Joshi P; Somu P; Baek KH
    Pharmaceutics; 2023 Jan; 15(2):. PubMed ID: 36839754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.