These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26589522)

  • 1. Stoichiometric implications of a biphasic life cycle.
    Tiegs SD; Berven KA; Carmack DJ; Capps KA
    Oecologia; 2016 Mar; 180(3):853-63. PubMed ID: 26589522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Warming alters coupled carbon and nutrient cycles in experimental streams.
    Williamson TJ; Cross WF; Benstead JP; Gíslason GM; Hood JM; Huryn AD; Johnson PW; Welter JR
    Glob Chang Biol; 2016 Jun; 22(6):2152-64. PubMed ID: 26719040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ontogenetic variation in the body stoichiometry of two fish species.
    Boros G; Sály P; Vanni MJ
    Oecologia; 2015 Oct; 179(2):329-41. PubMed ID: 25999048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis.
    Vanni MJ; McIntyre PB
    Ecology; 2016 Dec; 97(12):3460-3471. PubMed ID: 27912023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system.
    Scharler UM; Ulanowicz RE; Fogel ML; Wooller MJ; Jacobson-Meyers ME; Lovelock CE; Feller IC; Frischer M; Lee R; McKee K; Romero IC; Schmit JP; Shearer C
    Oecologia; 2015 Nov; 179(3):863-76. PubMed ID: 26183835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grazers, producer stoichiometry, and the light : nutrient hypothesis revisited.
    Hall SR; Leibold MA; Lytle DA; Smith VH
    Ecology; 2007 May; 88(5):1142-52. PubMed ID: 17536401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming.
    Hood JM; Benstead JP; Cross WF; Huryn AD; Johnson PW; Gíslason GM; Junker JR; Nelson D; Ólafsson JS; Tran C
    Glob Chang Biol; 2018 Mar; 24(3):1069-1084. PubMed ID: 28922515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parasite infection alters nitrogen cycling at the ecosystem scale.
    Mischler J; Johnson PT; McKenzie VJ; Townsend AR
    J Anim Ecol; 2016 May; 85(3):817-28. PubMed ID: 26919319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth.
    Hood JM; Vanni MJ; Flecker AS
    Oecologia; 2005 Dec; 146(2):247-57. PubMed ID: 16133197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems.
    Galbraith ED; Martiny AC
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8199-204. PubMed ID: 26056296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investment in boney defensive traits alters organismal stoichiometry and excretion in fish.
    El-Sabaawi RW; Warbanski ML; Rudman SM; Hovel R; Matthews B
    Oecologia; 2016 Aug; 181(4):1209-20. PubMed ID: 27075487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stoichiometric multitrophic networks reveal significance of land-sea interaction to ecosystem function in a subtropical nutrient-poor bight, South Africa.
    Scharler UM; Ayers MJ
    PLoS One; 2019; 14(1):e0210295. PubMed ID: 30615659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Physiological Stress on Nutrient Stoichiometry in Larval Amphibians.
    Kirschman LJ; Haslett S; Fritz KA; Whiles MR; Warne RW
    Physiol Biochem Zool; 2016; 89(4):313-21. PubMed ID: 27327181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cool tadpoles from Arctic environments waste fewer nutrients - high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North.
    Liess A; Guo J; Lind MI; Rowe O
    J Anim Ecol; 2015 Nov; 84(6):1744-56. PubMed ID: 26239271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ontogenetic variation in the ecological stoichiometry of 10 fish species during early development.
    Downs KN; Kelly PT; Ascanio A; Vanni MJ
    Ecology; 2023 Dec; 104(12):e4176. PubMed ID: 37782823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in C:N:S stoichiometry and nutrient storage related to body size in a holometabolous insect (Curculio davidi) (Coleoptera: Curculionidae) larva.
    Sun X; Small GE; Zhou X; Wang D; Li H; Liu C
    J Insect Sci; 2015; 15(1):. PubMed ID: 25843579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change.
    Sistla SA; Schimel JP
    New Phytol; 2012 Oct; 196(1):68-78. PubMed ID: 22924404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evidence of food-independent larval development in endemic Jamaican freshwater-breeding crabs.
    Anger K; Schubart CD
    Physiol Biochem Zool; 2005; 78(2):246-58. PubMed ID: 15778944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems.
    Atkinson CL; Capps KA; Rugenski AT; Vanni MJ
    Biol Rev Camb Philos Soc; 2017 Nov; 92(4):2003-2023. PubMed ID: 28008706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecological Stoichiometry for Parasitologists.
    Bernot RJ; Poulin R
    Trends Parasitol; 2018 Nov; 34(11):928-933. PubMed ID: 30104137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.