BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2658974)

  • 1. Cell fractionation studies indicate that dystrophin is a protein of surface membranes of skeletal muscle.
    Salviati G; Betto R; Ceoldo S; Biasia E; Bonilla E; Miranda AF; Dimauro S
    Biochem J; 1989 Mar; 258(3):837-41. PubMed ID: 2658974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photolabeling of the integral proteins of skeletal muscle sarcoplasmic reticulum: comparison of junctional and nonjunctional membrane fractions.
    Volpe P; Gutweniger HE; Montecucco C
    Arch Biochem Biophys; 1987 Feb; 253(1):138-45. PubMed ID: 2949700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of distinct domains of sarcolemma and T-tubules from rat skeletal muscle.
    Muñoz P; Rosemblatt M; Testar X; Palacín M; Zorzano A
    Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):273-80. PubMed ID: 7536412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dystrophin-glycoprotein complex is highly enriched in isolated skeletal muscle sarcolemma.
    Ohlendieck K; Ervasti JM; Snook JB; Campbell KP
    J Cell Biol; 1991 Jan; 112(1):135-48. PubMed ID: 1986002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-dependent phospholipid binding proteins associated with the membranes of rabbit skeletal muscle.
    Melgunov VI; Mamedova NA; Akimova EI; Adzhimolaev TA
    FEBS Lett; 1990 Jan; 260(1):79-82. PubMed ID: 2105237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a constituent of the junctional feet linking terminal cisternae to transverse tubules in skeletal muscle.
    Cadwell JJ; Caswell AH
    J Cell Biol; 1982 Jun; 93(3):543-50. PubMed ID: 6749861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The identification of sarcoplasmic reticulum terminal cisternae proteins in platelets.
    Fischer TH; Barton DW; Krause KH; White TE; Campbell KP; White GC
    Biochem J; 1989 Oct; 263(2):605-8. PubMed ID: 2512909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle.
    Zubrzycka-Gaarn EE; Bulman DE; Karpati G; Burghes AH; Belfall B; Klamut HJ; Talbot J; Hodges RS; Ray PN; Worton RG
    Nature; 1988 Jun; 333(6172):466-9. PubMed ID: 3287171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass spectrometric identification of dystrophin, the protein product of the Duchenne muscular dystrophy gene, in distinct muscle surface membranes.
    Murphy S; Ohlendieck K
    Int J Mol Med; 2017 Oct; 40(4):1078-1088. PubMed ID: 28765879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the association of dystrophin with the transverse tubular system in skeletal muscle.
    Knudson CM; Hoffman EP; Kahl SD; Kunkel LM; Campbell KP
    J Biol Chem; 1988 Jun; 263(17):8480-4. PubMed ID: 3286650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of dystrophin in cardiac sarcolemmal vesicles.
    Michalak M; Zubrzycka-Gaarn E
    Biochem Biophys Res Commun; 1990 Jun; 169(2):565-70. PubMed ID: 2141468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunoelectron microscopic localization of dystrophin in myofibres.
    Watkins SC; Hoffman EP; Slayter HS; Kunkel LM
    Nature; 1988 Jun; 333(6176):863-6. PubMed ID: 3290684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of sarcolemma from rabbit skeletal muscle.
    Drabikowski W; Zubrzycka E
    Recent Adv Stud Cardiac Struct Metab; 1976; 9():133-47. PubMed ID: 130657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The T-tubule is a cell-surface target for insulin-regulated recycling of membrane proteins in skeletal muscle.
    Muñoz P; Rosemblatt M; Testar X; Palacín M; Thoidis G; Pilch PF; Zorzano A
    Biochem J; 1995 Dec; 312 ( Pt 2)(Pt 2):393-400. PubMed ID: 8526847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular fractionation to junctional sarcoplasmic reticulum and biochemical characterization of 170 kDa Ca(2+)- and low-density-lipoprotein-binding protein in rabbit skeletal muscle.
    Damiani E; Margreth A
    Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):825-32. PubMed ID: 1872815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different localization of dystrophin in developing and adult human skeletal muscle.
    Wessels A; Ginjaar IB; Moorman AF; van Ommen GJ
    Muscle Nerve; 1991 Jan; 14(1):1-7. PubMed ID: 1992292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-localization of the dihydropyridine receptor and the cyclic AMP-binding subunit of an intrinsic protein kinase to the junctional membrane of the transverse tubules of skeletal muscle.
    Salvatori S; Damiani E; Barhanin J; Furlan S; Salviati G; Margreth A
    Biochem J; 1990 May; 267(3):679-87. PubMed ID: 2160233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of protein kinase C in skeletal muscle T-tubule membranes.
    Salvatori S; Furlan S; Millikin B; Sabbadini R; Betto R; Margreth A; Salviati G
    Biochem Biophys Res Commun; 1993 Nov; 196(3):1073-80. PubMed ID: 8250864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometric identification of dystrophin isoform Dp427 by on-membrane digestion of sarcolemma from skeletal muscle.
    Lewis C; Ohlendieck K
    Anal Biochem; 2010 Sep; 404(2):197-203. PubMed ID: 20507823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. delta- and gamma-Sarcoglycan localization in the sarcoplasmic reticulum of skeletal muscle.
    Ueda H; Ueda K; Baba T; Ohno S
    J Histochem Cytochem; 2001 Apr; 49(4):529-38. PubMed ID: 11259456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.