BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 26589869)

  • 1. Compostability assessment of nano-reinforced poly(lactic acid) films.
    Balaguer MP; Aliaga C; Fito C; Hortal M
    Waste Manag; 2016 Feb; 48():143-155. PubMed ID: 26589869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process.
    Stloukal P; Pekařová S; Kalendova A; Mattausch H; Laske S; Holzer C; Chitu L; Bodner S; Maier G; Slouf M; Koutny M
    Waste Manag; 2015 Aug; 42():31-40. PubMed ID: 25981155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compostability and biodegradation study of PLA-wheat straw and PLA-soy straw based green composites in simulated composting bioreactor.
    Pradhan R; Misra M; Erickson L; Mohanty A
    Bioresour Technol; 2010 Nov; 101(21):8489-91. PubMed ID: 20594827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory composting of extruded starch acetate and poly lactic acid blended foams.
    Ganjyal GM; Weber R; Hanna MA
    Bioresour Technol; 2007 Nov; 98(16):3176-9. PubMed ID: 17222552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laboratory composting of extruded poly(lactic acid) sheets.
    Ghorpade VM; Gennadios A; Hanna MA
    Bioresour Technol; 2001 Jan; 76(1):57-61. PubMed ID: 11315811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing biodegradation of PLA and PLA-g-AA/starch films using a phosphate-solubilizing bacillus species.
    Wu CS
    Macromol Biosci; 2008 Jun; 8(6):560-7. PubMed ID: 18322910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recyclability assessment of nano-reinforced plastic packaging.
    Sánchez C; Hortal M; Aliaga C; Devis A; Cloquell-Ballester VA
    Waste Manag; 2014 Dec; 34(12):2647-55. PubMed ID: 25263216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay.
    B A; Suin S; Khatua BB
    Carbohydr Polym; 2014 Sep; 110():430-9. PubMed ID: 24906776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradability of injection molded bioplastic pots containing polylactic acid and poultry feather fiber.
    Ahn HK; Huda MS; Smith MC; Mulbry W; Schmidt WF; Reeves JB
    Bioresour Technol; 2011 Apr; 102(7):4930-3. PubMed ID: 21320772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles.
    Fortunati E; Rinaldi S; Peltzer M; Bloise N; Visai L; Armentano I; Jiménez A; Latterini L; Kenny JM
    Carbohydr Polym; 2014 Jan; 101():1122-33. PubMed ID: 24299883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Nanofibrillar to Nanolaminar Poly(butylene succinate): Paving the Way to Robust Barrier and Mechanical Properties for Full-Biodegradable Poly(lactic acid) Films.
    Xie L; Xu H; Chen JB; Zhang ZJ; Hsiao BS; Zhong GJ; Chen J; Li ZM
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8023-32. PubMed ID: 25826123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradability evaluation of polymers by ISO 14855-2.
    Funabashi M; Ninomiya F; Kunioka M
    Int J Mol Sci; 2009 Aug; 10(8):3635-3654. PubMed ID: 20111676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: properties evaluation.
    Bitinis N; Fortunati E; Verdejo R; Bras J; Kenny JM; Torre L; López-Manchado MA
    Carbohydr Polym; 2013 Jul; 96(2):621-7. PubMed ID: 23768608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.
    Arrieta MP; Fortunati E; Dominici F; López J; Kenny JM
    Carbohydr Polym; 2015 May; 121():265-75. PubMed ID: 25659698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging.
    Ramos M; Jiménez A; Peltzer M; Garrigós MC
    Food Chem; 2014 Nov; 162():149-55. PubMed ID: 24874370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Molecular Weight on the Marine Biodegradability of Poly(l-lactic acid).
    Seok JH; Iwata T
    Biomacromolecules; 2024 Jul; 25(7):4420-4427. PubMed ID: 38885360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [In vitro study of the properties of bioresorbable lactic acid polymer materials].
    Merloz P; Minfelde R; Schelp C; Lavaste F; Huet-Olivier J; Faure C; Butel J
    Rev Chir Orthop Reparatrice Appar Mot; 1995; 81(5):433-44. PubMed ID: 8560013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and evaluation of biodegradable films containing the potent osteogenic compound BFB0261 for localized delivery.
    Umeki N; Sato T; Harada M; Takeda J; Saito S; Iwao Y; Itai S
    Int J Pharm; 2011 Feb; 404(1-2):10-8. PubMed ID: 21047548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel.
    Feng SS; Mei L; Anitha P; Gan CW; Zhou W
    Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polylactic acid (PLA): research, development and industrialization.
    Pang X; Zhuang X; Tang Z; Chen X
    Biotechnol J; 2010 Nov; 5(11):1125-36. PubMed ID: 21058315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.