These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26589869)

  • 21. Degradation of poly (lactic acid) and nanocomposites by Bacillus licheniformis.
    Arena M; Abbate C; Fukushima K; Gennari M
    Environ Sci Pollut Res Int; 2011 Jul; 18(6):865-70. PubMed ID: 21264520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of poly(L-lactide) blends and biodegradation by Lentzea waywayandensis.
    Nair NR; Nampoothiri KM; Pandey A
    Biotechnol Lett; 2012 Nov; 34(11):2031-5. PubMed ID: 22798041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications.
    Swaroop C; Shukla M
    Int J Biol Macromol; 2018 Jul; 113():729-736. PubMed ID: 29499267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose.
    Masmoudi F; Bessadok A; Dammak M; Jaziri M; Ammar E
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20904-20914. PubMed ID: 27488705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accelerating Biodegradation: Enhancing Poly(lactic acid) Breakdown at Mesophilic Environmental Conditions with Biostimulants.
    Mayekar PC; Auras R
    Macromol Rapid Commun; 2024 Apr; 45(7):e2300641. PubMed ID: 38206571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Melt Viscoelastic Assessment of Poly(Lactic Acid) Composting: Influence of UV Ageing.
    Verney V; Ramoné A; Delor-Jestin F; Commereuc S; Koutny M; Perchet G; Troquet J
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30340360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters.
    Shirai MA; Grossmann MV; Mali S; Yamashita F; Garcia PS; Müller CM
    Carbohydr Polym; 2013 Jan; 92(1):19-22. PubMed ID: 23218260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A facile method for preparing biodegradable chitosan derivatives with low grafting degree of poly(lactic acid).
    Li J; Kong M; Cheng XJ; Li JJ; Liu WF; Chen XG
    Int J Biol Macromol; 2011 Dec; 49(5):1016-21. PubMed ID: 21893088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions.
    Kalita NK; Bhasney SM; Mudenur C; Kalamdhad A; Katiyar V
    Chemosphere; 2020 May; 247():125875. PubMed ID: 32069712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physicochemical evolutions of starch/poly (lactic acid) composite biodegraded in real soil.
    Lv S; Zhang Y; Gu J; Tan H
    J Environ Manage; 2018 Dec; 228():223-231. PubMed ID: 30227334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Progress on biodegradation of polylactic acid--a review].
    Li F; Wang S; Liu W; Chen G
    Wei Sheng Wu Xue Bao; 2008 Feb; 48(2):262-8. PubMed ID: 18438013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PLA composites: From production to properties.
    Murariu M; Dubois P
    Adv Drug Deliv Rev; 2016 Dec; 107():17-46. PubMed ID: 27085468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An engineered enzyme embedded into PLA to make self-biodegradable plastic.
    Guicherd M; Ben Khaled M; Guéroult M; Nomme J; Dalibey M; Grimaud F; Alvarez P; Kamionka E; Gavalda S; Noël M; Vuillemin M; Amillastre E; Labourdette D; Cioci G; Tournier V; Kitpreechavanich V; Dubois P; André I; Duquesne S; Marty A
    Nature; 2024 Jul; 631(8022):884-890. PubMed ID: 39020178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of polylactic acid biodegradation ability of Brevibacillus brevis and Bacillus amyloliquefaciens and promotion of PLA biodegradation by soytone.
    Yu J; Kim PD; Jang Y; Kim SK; Han J; Min J
    Biodegradation; 2022 Oct; 33(5):477-487. PubMed ID: 35788449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradation of Poly(Lactic Acid) Biocomposites under Controlled Composting Conditions and Freshwater Biotope.
    Brdlík P; Borůvka M; Běhálek L; Lenfeld P
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33669420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Nano-Clay and Surfactant on the Biodegradation of Poly(Lactic Acid) Films.
    Mayekar PC; Castro-Aguirre E; Auras R; Selke S; Narayan R
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32028695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Release of micro- and nanoparticles from biodegradable plastic during in situ composting.
    Sintim HY; Bary AI; Hayes DG; English ME; Schaeffer SM; Miles CA; Zelenyuk A; Suski K; Flury M
    Sci Total Environ; 2019 Jul; 675():686-693. PubMed ID: 31039503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Film forming microbial biopolymers for commercial applications--a review.
    Vijayendra SV; Shamala TR
    Crit Rev Biotechnol; 2014 Dec; 34(4):338-57. PubMed ID: 23919238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biocompatibility of poly(lactic acid) with incorporated graphene-based materials.
    Pinto AM; Moreira S; Gonçalves IC; Gama FM; Mendes AM; Magalhães FD
    Colloids Surf B Biointerfaces; 2013 Apr; 104():229-38. PubMed ID: 23333912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silane modified starch for compatible reactive blend with poly(lactic acid).
    Jariyasakoolroj P; Chirachanchai S
    Carbohydr Polym; 2014 Jun; 106():255-63. PubMed ID: 24721076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.