BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

573 related articles for article (PubMed ID: 26589966)

  • 1. Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animal studies.
    Wajner M; Amaral AU
    Biosci Rep; 2015 Nov; 36(1):e00281. PubMed ID: 26589966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that Oxidative Disbalance and Mitochondrial Dysfunction are Involved in the Pathophysiology of Fatty Acid Oxidation Disorders.
    Ribas GS; Vargas CR
    Cell Mol Neurobiol; 2022 Apr; 42(3):521-532. PubMed ID: 32876899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New genetic defects in mitochondrial fatty acid oxidation and carnitine deficiency.
    Stanley CA
    Adv Pediatr; 1987; 34():59-88. PubMed ID: 3318304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial fatty acid beta-oxidation in the human eye and brain: implications for the retinopathy of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency.
    Tyni T; Paetau A; Strauss AW; Middleton B; Kivelä T
    Pediatr Res; 2004 Nov; 56(5):744-50. PubMed ID: 15347768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial fatty acid oxidation disorders: pathophysiological studies in mouse models.
    Spiekerkoetter U; Wood PA
    J Inherit Metab Dis; 2010 Oct; 33(5):539-46. PubMed ID: 20532823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-chain fatty acid oxidation during early human development.
    Oey NA; den Boer ME; Wijburg FA; Vekemans M; Augé J; Steiner C; Wanders RJ; Waterham HR; Ruiter JP; Attié-Bitach T
    Pediatr Res; 2005 Jun; 57(6):755-9. PubMed ID: 15845636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and cellular modifiers of oxidative stress: what can we learn from fatty acid oxidation defects?
    Olsen RK; Cornelius N; Gregersen N
    Mol Genet Metab; 2013; 110 Suppl():S31-9. PubMed ID: 24206932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of heat stress and bezafibrate on mitochondrial beta-oxidation: comparison between cultured cells from normal and mitochondrial fatty acid oxidation disorder children using in vitro probe acylcarnitine profiling assay.
    Li H; Fukuda S; Hasegawa Y; Kobayashi H; Purevsuren J; Mushimoto Y; Yamaguchi S
    Brain Dev; 2010 May; 32(5):362-70. PubMed ID: 19589653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat stress deteriorates mitochondrial beta-oxidation of long-chain fatty acids in cultured fibroblasts with fatty acid beta-oxidation disorders.
    Li H; Fukuda S; Hasegawa Y; Purevsuren J; Kobayashi H; Mushimoto Y; Yamaguchi S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jun; 878(20):1669-72. PubMed ID: 20207594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse models for disorders of mitochondrial fatty acid beta-oxidation.
    Schuler AM; Wood PA
    ILAR J; 2002; 43(2):57-65. PubMed ID: 11917157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food withdrawal lowers energy expenditure and induces inactivity in long-chain fatty acid oxidation-deficient mouse models.
    Diekman EF; van Weeghel M; Wanders RJ; Visser G; Houten SM
    FASEB J; 2014 Jul; 28(7):2891-900. PubMed ID: 24648546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medium branched chain fatty acids improve the profile of tricarboxylic acid cycle intermediates in mitochondrial fatty acid β-oxidation deficient cells: A comparative study.
    Karunanidhi A; Van't Land C; Rajasundaram D; Grings M; Vockley J; Mohsen AW
    J Inherit Metab Dis; 2022 May; 45(3):541-556. PubMed ID: 35076099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue acylcarnitine status in a mouse model of mitochondrial β-oxidation deficiency during metabolic decompensation due to influenza virus infection.
    Tarasenko TN; Cusmano-Ozog K; McGuire PJ
    Mol Genet Metab; 2018 Sep; 125(1-2):144-152. PubMed ID: 30031688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship.
    Gregersen N; Andresen BS; Corydon MJ; Corydon TJ; Olsen RK; Bolund L; Bross P
    Hum Mutat; 2001 Sep; 18(3):169-89. PubMed ID: 11524729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders.
    Cecatto C; Hickmann FH; Rodrigues MD; Amaral AU; Wajner M
    FEBS J; 2015 Dec; 282(24):4714-26. PubMed ID: 26408230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial bioenergetics deregulation caused by long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies in rat brain: a possible role of mPTP opening as a pathomechanism in these disorders?
    Tonin AM; Amaral AU; Busanello EN; Gasparotto J; Gelain DP; Gregersen N; Wajner M
    Biochim Biophys Acta; 2014 Sep; 1842(9):1658-67. PubMed ID: 24946182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Newborn screening for disorders of fatty-acid oxidation: experience and recommendations from an expert meeting.
    Lindner M; Hoffmann GF; Matern D
    J Inherit Metab Dis; 2010 Oct; 33(5):521-6. PubMed ID: 20373143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered mitochondrial metabolism in peripheral blood cells from patients with inborn errors of β-oxidation.
    Stenlid R; Olsson D; Cen J; Manell H; Haglind C; Chowdhury AI; Bergsten P; Nordenström A; Halldin M
    Clin Transl Sci; 2022 Jan; 15(1):182-194. PubMed ID: 34437764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study of the inborn errors of mitochondrial fatty acid beta-oxidation deficiency].
    Zhu JM; Yang Z
    Beijing Da Xue Xue Bao Yi Xue Ban; 2006 Apr; 38(2):214-7. PubMed ID: 16617370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of mitochondrial fatty acid β-oxidation in human: what can we learn from inborn fatty acid β-oxidation deficiencies?
    Bastin J
    Biochimie; 2014 Jan; 96():113-20. PubMed ID: 23764392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.