BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 26589967)

  • 1. Nucleotide-binding mechanisms in pseudokinases.
    Hammarén HM; Virtanen AT; Silvennoinen O
    Biosci Rep; 2015 Nov; 36(1):e00282. PubMed ID: 26589967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Techniques to examine nucleotide binding by pseudokinases.
    Lucet IS; Babon JJ; Murphy JM
    Biochem Soc Trans; 2013 Aug; 41(4):975-80. PubMed ID: 23863166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner.
    Bailey FP; Byrne DP; Oruganty K; Eyers CE; Novotny CJ; Shokat KM; Kannan N; Eyers PA
    Biochem J; 2015 Apr; 467(1):47-62. PubMed ID: 25583260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation.
    Hammarén HM; Ungureanu D; Grisouard J; Skoda RC; Hubbard SR; Silvennoinen O
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4642-7. PubMed ID: 25825724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties.
    Murphy JM; Zhang Q; Young SN; Reese ML; Bailey FP; Eyers PA; Ungureanu D; Hammaren H; Silvennoinen O; Varghese LN; Chen K; Tripaydonis A; Jura N; Fukuda K; Qin J; Nimchuk Z; Mudgett MB; Elowe S; Gee CL; Liu L; Daly RJ; Manning G; Babon JJ; Lucet IS
    Biochem J; 2014 Jan; 457(2):323-34. PubMed ID: 24107129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Ligand Binding to Pseudokinases Using a Thermal Shift Assay.
    Lucet IS; Murphy JM
    Methods Mol Biol; 2017; 1636():91-104. PubMed ID: 28730475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site.
    Scheeff ED; Eswaran J; Bunkoczi G; Knapp S; Manning G
    Structure; 2009 Jan; 17(1):128-38. PubMed ID: 19141289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal coordination in kinases and pseudokinases.
    Knape MJ; Herberg FW
    Biochem Soc Trans; 2017 Jun; 45(3):653-663. PubMed ID: 28620027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Day of the dead: pseudokinases and pseudophosphatases in physiology and disease.
    Reiterer V; Eyers PA; Farhan H
    Trends Cell Biol; 2014 Sep; 24(9):489-505. PubMed ID: 24818526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospects for pharmacological targeting of pseudokinases.
    Kung JE; Jura N
    Nat Rev Drug Discov; 2019 Jul; 18(7):501-526. PubMed ID: 30850748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracing the origin and evolution of pseudokinases across the tree of life.
    Kwon A; Scott S; Taujale R; Yeung W; Kochut KJ; Eyers PA; Kannan N
    Sci Signal; 2019 Apr; 12(578):. PubMed ID: 31015289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudokinases repurpose flexibility signatures associated with the protein kinase fold for noncatalytic roles.
    Paul A; Subhadarshini S; Srinivasan N
    Proteins; 2022 Mar; 90(3):747-764. PubMed ID: 34708889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide and structural analyses of pseudokinases encoded in the genome of Arabidopsis thaliana provide functional insights.
    Paul A; Srinivasan N
    Proteins; 2020 Dec; 88(12):1620-1638. PubMed ID: 32667690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP and MO25alpha regulate the conformational state of the STRADalpha pseudokinase and activation of the LKB1 tumour suppressor.
    Zeqiraj E; Filippi BM; Goldie S; Navratilova I; Boudeau J; Deak M; Alessi DR; van Aalten DM
    PLoS Biol; 2009 Jun; 7(6):e1000126. PubMed ID: 19513107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A conserved non-canonical motif in the pseudoactive site of the ROP5 pseudokinase domain mediates its effect on Toxoplasma virulence.
    Reese ML; Boothroyd JC
    J Biol Chem; 2011 Aug; 286(33):29366-29375. PubMed ID: 21708941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudokinases: update on their functions and evaluation as new drug targets.
    Byrne DP; Foulkes DM; Eyers PA
    Future Med Chem; 2017 Jan; 9(2):245-265. PubMed ID: 28097887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Looking lively: emerging principles of pseudokinase signaling.
    Sheetz JB; Lemmon MA
    Trends Biochem Sci; 2022 Oct; 47(10):875-891. PubMed ID: 35585008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cataloguing the dead: breathing new life into pseudokinase research.
    Shrestha S; Byrne DP; Harris JA; Kannan N; Eyers PA
    FEBS J; 2020 Oct; 287(19):4150-4169. PubMed ID: 32053275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dawn of the dead: protein pseudokinases signal new adventures in cell biology.
    Eyers PA; Murphy JM
    Biochem Soc Trans; 2013 Aug; 41(4):969-74. PubMed ID: 23863165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved phosphoryl transfer mechanisms within kinase families and the role of the C8 proton of ATP in the activation of phosphoryl transfer.
    Kenyon CP; Roth RL; van der Westhuyzen CW; Parkinson CJ
    BMC Res Notes; 2012 Mar; 5():131. PubMed ID: 22397702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.