BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 26589967)

  • 21. Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases.
    Sheetz JB; Mathea S; Karvonen H; Malhotra K; Chatterjee D; Niininen W; Perttilä R; Preuss F; Suresh K; Stayrook SE; Tsutsui Y; Radhakrishnan R; Ungureanu D; Knapp S; Lemmon MA
    Mol Cell; 2020 Aug; 79(3):390-405.e7. PubMed ID: 32619402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New insights into the evolutionary conservation of the sole PIKK pseudokinase Tra1/TRRAP.
    Elías-Villalobos A; Fort P; Helmlinger D
    Biochem Soc Trans; 2019 Dec; 47(6):1597-1608. PubMed ID: 31769470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insights into the evolution of divergent nucleotide-binding mechanisms among pseudokinases revealed by crystal structures of human and mouse MLKL.
    Murphy JM; Lucet IS; Hildebrand JM; Tanzer MC; Young SN; Sharma P; Lessene G; Alexander WS; Babon JJ; Silke J; Czabotar PE
    Biochem J; 2014 Feb; 457(3):369-77. PubMed ID: 24219132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genomics, evolution, and crystal structure of a new family of bacterial spore kinases.
    Scheeff ED; Axelrod HL; Miller MD; Chiu HJ; Deacon AM; Wilson IA; Manning G
    Proteins; 2010 May; 78(6):1470-82. PubMed ID: 20077512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The nucleotide-binding site of human sphingosine kinase 1.
    Pitson SM; Moretti PA; Zebol JR; Zareie R; Derian CK; Darrow AL; Qi J; D'Andrea RJ; Bagley CJ; Vadas MA; Wattenberg BW
    J Biol Chem; 2002 Dec; 277(51):49545-53. PubMed ID: 12393916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redefining pseudokinases: A look at the untapped enzymatic potential of pseudokinases.
    Pon A; Osinski A; Sreelatha A
    IUBMB Life; 2023 Apr; 75(4):370-376. PubMed ID: 36602414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Type II Binders Targeting the "GLR-Out" Conformation of the Pseudokinase STRADα.
    Smith RHB; Khan ZM; Ung PM; Scopton AP; Silber L; Mack SM; Real AM; Schlessinger A; Dar AC
    Biochemistry; 2021 Feb; 60(4):289-302. PubMed ID: 33440120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pseudokinases-remnants of evolution or key allosteric regulators?
    Zeqiraj E; van Aalten DM
    Curr Opin Struct Biol; 2010 Dec; 20(6):772-81. PubMed ID: 21074407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pseudokinase drug intervention: a potentially poisoned chalice.
    Claus J; Cameron AJ; Parker PJ
    Biochem Soc Trans; 2013 Aug; 41(4):1083-8. PubMed ID: 23863183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A historical overview of protein kinases and their targeted small molecule inhibitors.
    Roskoski R
    Pharmacol Res; 2015 Oct; 100():1-23. PubMed ID: 26207888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Going for broke: targeting the human cancer pseudokinome.
    Bailey FP; Byrne DP; McSkimming D; Kannan N; Eyers PA
    Biochem J; 2015 Jan; 465(2):195-211. PubMed ID: 25559089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pseudokinases: Prospects for expanding the therapeutic targets armamentarium.
    Devang N; Pani A; Rajanikant GK
    Adv Protein Chem Struct Biol; 2021; 124():121-185. PubMed ID: 33632464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pseudokinases: Flipping the ATP for AMPylation.
    Bardwell L
    Curr Biol; 2019 Jan; 29(1):R23-R25. PubMed ID: 30620911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational tools and resources for pseudokinase research.
    O'Boyle B; Shrestha S; Kochut K; Eyers PA; Kannan N
    Methods Enzymol; 2022; 667():403-426. PubMed ID: 35525549
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death.
    Hildebrand JM; Tanzer MC; Lucet IS; Young SN; Spall SK; Sharma P; Pierotti C; Garnier JM; Dobson RC; Webb AI; Tripaydonis A; Babon JJ; Mulcair MD; Scanlon MJ; Alexander WS; Wilks AF; Czabotar PE; Lessene G; Murphy JM; Silke J
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15072-7. PubMed ID: 25288762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The dual function of KSR1: a pseudokinase and beyond.
    Zhang H; Koo CY; Stebbing J; Giamas G
    Biochem Soc Trans; 2013 Aug; 41(4):1078-82. PubMed ID: 23863182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A pickup in pseudokinase activity.
    Dar AC
    Biochem Soc Trans; 2013 Aug; 41(4):987-94. PubMed ID: 23863168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of carboxylate residues adjacent to the conserved core Walker B motifs in the catalytic cycle of multidrug resistance protein 1 (ABCC1).
    Payen LF; Gao M; Westlake CJ; Cole SP; Deeley RG
    J Biol Chem; 2003 Oct; 278(40):38537-47. PubMed ID: 12882957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nuclear receptor-binding protein 1: a novel tumour suppressor and pseudokinase.
    Kerr JS; Wilson CH
    Biochem Soc Trans; 2013 Aug; 41(4):1055-60. PubMed ID: 23863178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleotide Binding, Evolutionary Insights, and Interaction Partners of the Pseudokinase Unc-51-like Kinase 4.
    Preuss F; Chatterjee D; Mathea S; Shrestha S; St-Germain J; Saha M; Kannan N; Raught B; Rottapel R; Knapp S
    Structure; 2020 Nov; 28(11):1184-1196.e6. PubMed ID: 32814032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.