These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 26589967)

  • 41. Structural and evolutionary adaptation of rhoptry kinases and pseudokinases, a family of coccidian virulence factors.
    Talevich E; Kannan N
    BMC Evol Biol; 2013 Jun; 13():117. PubMed ID: 23742205
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protein engineering strategies to stimulate the functions of bacterial pseudokinases.
    Yang X; Kowallis KA; Childers WS
    Methods Enzymol; 2022; 667():275-302. PubMed ID: 35525544
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of pseudokinases in cancer.
    Zhang H; Photiou A; Grothey A; Stebbing J; Giamas G
    Cell Signal; 2012 Jun; 24(6):1173-84. PubMed ID: 22330072
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pseudokinases from a structural perspective.
    Taylor SS; Shaw A; Hu J; Meharena HS; Kornev A
    Biochem Soc Trans; 2013 Aug; 41(4):981-6. PubMed ID: 23863167
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing.
    Lee KP; Dey M; Neculai D; Cao C; Dever TE; Sicheri F
    Cell; 2008 Jan; 132(1):89-100. PubMed ID: 18191223
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plasmodium pseudo-Tyrosine Kinase-like binds PP1 and SERA5 and is exported to host erythrocytes.
    Gnangnon B; Fréville A; Cailliau K; Leroy C; De Witte C; Tulasne D; Martoriarti A; Jung V; Guerrera IC; Marion S; Khalife J; Pierrot C
    Sci Rep; 2019 May; 9(1):8120. PubMed ID: 31148576
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Purification, crystallization and drug screening of the IRAK pseudokinases.
    Lange SM; Kulathu Y
    Methods Enzymol; 2022; 667():101-121. PubMed ID: 35525539
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation.
    Sherrer RL; O'Donoghue P; Söll D
    Nucleic Acids Res; 2008 Mar; 36(4):1247-59. PubMed ID: 18174226
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CRISPR deletions in cell lines for reconstitution studies of pseudokinase function.
    Jacobsen AV; Murphy JM
    Methods Enzymol; 2022; 667():229-273. PubMed ID: 35525543
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methods for discovering catalytic activities for pseudokinases.
    Black MH; Gradowski M; Pawłowski K; Tagliabracci VS
    Methods Enzymol; 2022; 667():575-610. PubMed ID: 35525554
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tribbles pseudokinases: novel targets for chemical biology and drug discovery?
    Foulkes DM; Byrne DP; Bailey FP; Eyers PA
    Biochem Soc Trans; 2015 Oct; 43(5):1095-103. PubMed ID: 26517930
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The PEAK family of pseudokinases, their role in cell signalling and cancer.
    Patel O; Roy MJ; Murphy JM; Lucet IS
    FEBS J; 2020 Oct; 287(19):4183-4197. PubMed ID: 31599110
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of the C8 proton of ATP in the catalysis of shikimate kinase and adenylate kinase.
    Kenyon CP; Roth RL
    BMC Biochem; 2012 Aug; 13():15. PubMed ID: 22876783
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural and Functional Characterization of the JH2 Pseudokinase Domain of JAK Family Tyrosine Kinase 2 (TYK2).
    Min X; Ungureanu D; Maxwell S; Hammarén H; Thibault S; Hillert EK; Ayres M; Greenfield B; Eksterowicz J; Gabel C; Walker N; Silvennoinen O; Wang Z
    J Biol Chem; 2015 Nov; 290(45):27261-27270. PubMed ID: 26359499
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ATP allosterically stabilizes integrin-linked kinase for efficient force generation.
    Martin IM; Nava MM; Wickström SA; Gräter F
    Proc Natl Acad Sci U S A; 2022 Mar; 119(11):e2106098119. PubMed ID: 35259013
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Allosteric protein kinase regulation by pseudokinases: insights from STRAD.
    Rajakulendran T; Sicheri F
    Sci Signal; 2010 Mar; 3(111):pe8. PubMed ID: 20197543
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The conserved tyrosine residues 401 and 1044 in ATP sites of human P-glycoprotein are critical for ATP binding and hydrolysis: evidence for a conserved subdomain, the A-loop in the ATP-binding cassette.
    Kim IW; Peng XH; Sauna ZE; FitzGerald PC; Xia D; Müller M; Nandigama K; Ambudkar SV
    Biochemistry; 2006 Jun; 45(24):7605-16. PubMed ID: 16768456
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mapping of the ATP-binding domain of human fructosamine 3-kinase-related protein by affinity labelling with 5'-[p-(fluorosulfonyl)benzoyl]adenosine.
    Payne LS; Brown PM; Middleditch M; Baker E; Cooper GJ; Loomes KM
    Biochem J; 2008 Dec; 416(2):281-8. PubMed ID: 18637789
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations.
    Scott JW; Hawley SA; Green KA; Anis M; Stewart G; Scullion GA; Norman DG; Hardie DG
    J Clin Invest; 2004 Jan; 113(2):274-84. PubMed ID: 14722619
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Predicting the three-dimensional structure of human P-glycoprotein in absence of ATP by computational techniques embodying crosslinking data: insight into the mechanism of ligand migration and binding sites.
    Vandevuer S; Van Bambeke F; Tulkens PM; Prévost M
    Proteins; 2006 May; 63(3):466-78. PubMed ID: 16463278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.