BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 26590261)

  • 1. Modeling co-occupancy of transcription factors using chromatin features.
    Liu L; Zhao W; Zhou X
    Nucleic Acids Res; 2016 Mar; 44(5):e49. PubMed ID: 26590261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the relationship of epigenetic modifications to transcription factor binding.
    Liu L; Jin G; Zhou X
    Nucleic Acids Res; 2015 Apr; 43(8):3873-85. PubMed ID: 25820421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data.
    Zhang L; Xue G; Liu J; Li Q; Wang Y
    BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling transcription factor occupancy to nucleosome architecture with DNase-FLASH.
    Vierstra J; Wang H; John S; Sandstrom R; Stamatoyannopoulos JA
    Nat Methods; 2014 Jan; 11(1):66-72. PubMed ID: 24185839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative binding of transcription factors in the human genome.
    Nie Y; Shu C; Sun X
    Genomics; 2020 Sep; 112(5):3427-3434. PubMed ID: 32574834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features.
    Chen CY; Morris Q; Mitchell JA
    BMC Genomics; 2012 Apr; 13():152. PubMed ID: 22537144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors.
    Wang J; Zhuang J; Iyer S; Lin X; Whitfield TW; Greven MC; Pierce BG; Dong X; Kundaje A; Cheng Y; Rando OJ; Birney E; Myers RM; Noble WS; Snyder M; Weng Z
    Genome Res; 2012 Sep; 22(9):1798-812. PubMed ID: 22955990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantitative analysis of the impact on chromatin accessibility by histone modifications and binding of transcription factors in DNase I hypersensitive sites.
    Cui P; Li J; Sun B; Zhang M; Lian B; Li Y; Xie L
    Biomed Res Int; 2013; 2013():914971. PubMed ID: 24236298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.
    Schmidt F; Gasparoni N; Gasparoni G; Gianmoena K; Cadenas C; Polansky JK; Ebert P; Nordström K; Barann M; Sinha A; Fröhler S; Xiong J; Dehghani Amirabad A; Behjati Ardakani F; Hutter B; Zipprich G; Felder B; Eils J; Brors B; Chen W; Hengstler JG; Hamann A; Lengauer T; Rosenstiel P; Walter J; Schulz MH
    Nucleic Acids Res; 2017 Jan; 45(1):54-66. PubMed ID: 27899623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the impact of single nucleotide variants on transcription factor binding.
    Shi W; Fornes O; Mathelier A; Wasserman WW
    Nucleic Acids Res; 2016 Dec; 44(21):10106-10116. PubMed ID: 27492288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence and chromatin determinants of cell-type-specific transcription factor binding.
    Arvey A; Agius P; Noble WS; Leslie C
    Genome Res; 2012 Sep; 22(9):1723-34. PubMed ID: 22955984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The patterns of histone modifications in the vicinity of transcription factor binding sites in human lymphoblastoid cell lines.
    Nie Y; Liu H; Sun X
    PLoS One; 2013; 8(3):e60002. PubMed ID: 23527292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrative analysis of TFBS-clustered regions reveals new transcriptional regulation models on the accessible chromatin landscape.
    Chen H; Li H; Liu F; Zheng X; Wang S; Bo X; Shu W
    Sci Rep; 2015 Feb; 5():8465. PubMed ID: 25682954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mocap: large-scale inference of transcription factor binding sites from chromatin accessibility.
    Chen X; Yu B; Carriero N; Silva C; Bonneau R
    Nucleic Acids Res; 2017 May; 45(8):4315-4329. PubMed ID: 28334916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition between DNA methylation and transcription factors determines binding of NRF1.
    Domcke S; Bardet AF; Adrian Ginno P; Hartl D; Burger L; Schübeler D
    Nature; 2015 Dec; 528(7583):575-9. PubMed ID: 26675734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CpG content-dependent associations between transcription factors and histone modifications.
    Fischer J; Ardakani FB; Kattler K; Walter J; Schulz MH
    PLoS One; 2021; 16(4):e0249985. PubMed ID: 33857234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.