BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 26590422)

  • 1. Descending Command Neurons in the Brainstem that Halt Locomotion.
    Bouvier J; Caggiano V; Leiras R; Caldeira V; Bellardita C; Balueva K; Fuchs A; Kiehn O
    Cell; 2015 Nov; 163(5):1191-1203. PubMed ID: 26590422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brainstem Steering of Locomotor Activity in the Newborn Rat.
    Oueghlani Z; Simonnet C; Cardoit L; Courtand G; Cazalets JR; Morin D; Juvin L; Barrière G
    J Neurosci; 2018 Aug; 38(35):7725-7740. PubMed ID: 30037828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotor recovery in spinal-transected lamprey: role of functional regeneration of descending axons from brainstem locomotor command neurons.
    McClellan AD
    Neuroscience; 1990; 37(3):781-98. PubMed ID: 2247224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deconstructing the modular organization and real-time dynamics of mammalian spinal locomotor networks.
    Hsu LJ; Bertho M; Kiehn O
    Nat Commun; 2023 Feb; 14(1):873. PubMed ID: 36797254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brainstem command systems for locomotion in the lamprey: localization of descending pathways in the spinal cord.
    McClellan AD
    Brain Res; 1988 Aug; 457(2):338-49. PubMed ID: 3219560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions.
    Noga BR; Kriellaars DJ; Jordan LM
    J Neurosci; 1991 Jun; 11(6):1691-700. PubMed ID: 2045881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of Orienting Movements and Locomotion by Projection-Defined Subsets of Brainstem V2a Neurons.
    Usseglio G; Gatier E; Heuzé A; Hérent C; Bouvier J
    Curr Biol; 2020 Dec; 30(23):4665-4681.e6. PubMed ID: 33007251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotor pattern generation and descending control: a historical perspective.
    Dubuc R; Cabelguen JM; Ryczko D
    J Neurophysiol; 2023 Aug; 130(2):401-416. PubMed ID: 37465884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Brainstem Neural Substrate for Stopping Locomotion.
    Grätsch S; Auclair F; Demers O; Auguste E; Hanna A; Büschges A; Dubuc R
    J Neurosci; 2019 Feb; 39(6):1044-1057. PubMed ID: 30541913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamatergic neurons of the gigantocellular reticular nucleus shape locomotor pattern and rhythm in the freely behaving mouse.
    Lemieux M; Bretzner F
    PLoS Biol; 2019 Apr; 17(4):e2003880. PubMed ID: 31017885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hindbrain V2a neurons in the excitation of spinal locomotor circuits during zebrafish swimming.
    Kimura Y; Satou C; Fujioka S; Shoji W; Umeda K; Ishizuka T; Yawo H; Higashijima S
    Curr Biol; 2013 May; 23(10):843-9. PubMed ID: 23623549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of spinal cord inputs in modulating the activity of reticulospinal neurons during fictive locomotion in the lamprey.
    Dubuc R; Grillner S
    Brain Res; 1989 Mar; 483(1):196-200. PubMed ID: 2650805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between Dorsal and Ventral Root Stimulation on the Generation of Locomotor-Like Activity in the Neonatal Mouse Spinal Cord.
    Pujala A; Blivis D; O'Donovan MJ
    eNeuro; 2016; 3(3):. PubMed ID: 27419215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple Rhythm-Generating Circuits Act in Tandem with Pacemaker Properties to Control the Start and Speed of Locomotion.
    Song J; Pallucchi I; Ausborn J; Ampatzis K; Bertuzzi M; Fontanel P; Picton LD; El Manira A
    Neuron; 2020 Mar; 105(6):1048-1061.e4. PubMed ID: 31982322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional regeneration of descending brainstem command pathways for locomotion demonstrated in the in vitro lamprey CNS.
    McClellan AD
    Brain Res; 1988 May; 448(2):339-45. PubMed ID: 3378155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations.
    McClellan AD
    J Neurophysiol; 1994 Aug; 72(2):847-60. PubMed ID: 7983540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotor speed control circuits in the caudal brainstem.
    Capelli P; Pivetta C; Soledad Esposito M; Arber S
    Nature; 2017 Nov; 551(7680):373-377. PubMed ID: 29059682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion.
    Smith JC; Feldman JL
    J Neurosci Methods; 1987 Oct; 21(2-4):321-33. PubMed ID: 2890797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity.
    Messina JA; St Paul A; Hargis S; Thompson WE; McClellan AD
    Front Neural Circuits; 2017; 11():89. PubMed ID: 29225569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep imaging in the brainstem reveals functional heterogeneity in V2a neurons controlling locomotion.
    Schwenkgrub J; Harrell ER; Bathellier B; Bouvier J
    Sci Adv; 2020 Dec; 6(49):. PubMed ID: 33277252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.