These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26590539)

  • 1. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water.
    Carof A; Salanne M; Charpentier T; Rotenberg B
    J Chem Phys; 2015 Nov; 143(19):194504. PubMed ID: 26590539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collective water dynamics in the first solvation shell drive the NMR relaxation of aqueous quadrupolar cations.
    Carof A; Salanne M; Charpentier T; Rotenberg B
    J Chem Phys; 2016 Sep; 145(12):124508. PubMed ID: 27782645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate quadrupolar NMR relaxation rates of aqueous cations from classical molecular dynamics.
    Carof A; Salanne M; Charpentier T; Rotenberg B
    J Phys Chem B; 2014 Nov; 118(46):13252-7. PubMed ID: 25340813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR Relaxation Rates of Quadrupolar Aqueous Ions from Classical Molecular Dynamics Using Force-Field Specific Sternheimer Factors.
    Chubak I; Scalfi L; Carof A; Rotenberg B
    J Chem Theory Comput; 2021 Oct; 17(10):6006-6017. PubMed ID: 34570493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quadrupolar NMR Spin Relaxation Calculated Using Ab Initio Molecular Dynamics: Group 1 and Group 17 Ions in Aqueous Solution.
    Badu S; Truflandier L; Autschbach J
    J Chem Theory Comput; 2013 Sep; 9(9):4074-86. PubMed ID: 26592401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulations of electric field gradient fluctuations and dynamics around sodium ions in ionic liquids.
    Gimbal-Zofka Y; Karg B; Dziubinska-Kühn K; Kowalska M; Wesolowski TA; Rumble CA
    J Chem Phys; 2022 Dec; 157(24):244502. PubMed ID: 36586985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quadrupolar
    Chubak I; Alon L; Silletta EV; Madelin G; Jerschow A; Rotenberg B
    Nat Commun; 2023 Jan; 14(1):84. PubMed ID: 36604414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkaline earth chloride hydrates: chlorine quadrupolar and chemical shift tensors by solid-state NMR spectroscopy and plane wave pseudopotential calculations.
    Bryce DL; Bultz EB
    Chemistry; 2007; 13(17):4786-96. PubMed ID: 17385204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quadrupolar NMR Relaxation from ab Initio Molecular Dynamics: Improved Sampling and Cluster Models versus Periodic Calculations.
    Philips A; Marchenko A; Truflandier LA; Autschbach J
    J Chem Theory Comput; 2017 Sep; 13(9):4397-4409. PubMed ID: 28719202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR investigations of Li(+) ion dynamics in the NASICON ionic conductors [Formula: see text].
    Barré M; Emery J; Florian P; Le Berre F; Crosnier-Lopez MP; Fourquet JL
    J Phys Condens Matter; 2009 Apr; 21(17):175404. PubMed ID: 21825419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of multinuclear magnetic resonance and gauge-including projector-augmented-wave calculations to the study of solid group 13 chlorides.
    Chapman RP; Bryce DL
    Phys Chem Chem Phys; 2009 Aug; 11(32):6987-98. PubMed ID: 19652833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions.
    Park S; Odelius M; Gaffney KJ
    J Phys Chem B; 2009 Jun; 113(22):7825-35. PubMed ID: 19435307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial layers between ion and water detected by terahertz spectroscopy.
    Singh AK; Doan LC; Lou D; Wen C; Vinh NQ
    J Chem Phys; 2022 Aug; 157(5):054501. PubMed ID: 35933214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state (79/81)Br NMR and gauge-including projector-augmented wave study of structure, symmetry, and hydration state in alkaline earth metal bromides.
    Widdifield CM; Bryce DL
    J Phys Chem A; 2010 Feb; 114(5):2102-16. PubMed ID: 20085261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotational dynamics of benzene and water in an ionic liquid explored via molecular dynamics simulations and NMR T1 measurements.
    Yasaka Y; Klein ML; Nakahara M; Matubayasi N
    J Chem Phys; 2012 Feb; 136(7):074508. PubMed ID: 22360249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode coupling theory analysis of electrolyte solutions: Time dependent diffusion, intermediate scattering function, and ion solvation dynamics.
    Roy S; Yashonath S; Bagchi B
    J Chem Phys; 2015 Mar; 142(12):124502. PubMed ID: 25833591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion exchange in reverse micelles.
    Pal S; Vishal G; Gandhi KS; Ayappa KG
    Langmuir; 2005 Jan; 21(2):767-78. PubMed ID: 15641853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion and Molecular Transport in Solid Electrolytes Studied by NMR.
    Volkov VI; Chernyak AV; Slesarenko NA; Avilova IA
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion-specific solvation water dynamics: single water versus collective water effects.
    Rinne KF; Gekle S; Netz RR
    J Phys Chem A; 2014 Dec; 118(50):11667-77. PubMed ID: 25474321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR study of Li+ ion dynamics in the perovskite Li(3x)La(1/3-x)NbO3.
    Emery J; Bohnke O; Florian P; Marzouk K
    J Phys Chem B; 2005 Nov; 109(44):20680-9. PubMed ID: 16853680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.