These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26590540)

  • 1. Pairwise-additive force fields for selected aqueous monovalent ions from adaptive force matching.
    Li J; Wang F
    J Chem Phys; 2015 Nov; 143(19):194505. PubMed ID: 26590540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field.
    Yang ZZ; Li X
    J Phys Chem A; 2005 Apr; 109(16):3517-20. PubMed ID: 16839014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Prediction of the Hydration Free Energies of 20 Salts through Adaptive Force Matching and the Proper Comparison with Experimental References.
    Li J; Wang F
    J Phys Chem B; 2017 Jul; 121(27):6637-6645. PubMed ID: 28621540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations.
    Joung IS; Cheatham TE
    J Phys Chem B; 2008 Jul; 112(30):9020-41. PubMed ID: 18593145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics Investigation of Alkali Metal Ions in Liquid and Aqueous Ammonia.
    Orabi EA; Lamoureux G
    J Chem Theory Comput; 2013 May; 9(5):2324-38. PubMed ID: 26583725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability.
    Warren GL; Patel S
    J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A transferable ab initio based force field for aqueous ions.
    Tazi S; Molina JJ; Rotenberg B; Turq P; Vuilleumier R; Salanne M
    J Chem Phys; 2012 Mar; 136(11):114507. PubMed ID: 22443777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic force field optimization based on single-ion and ion-pair solvation properties.
    Fyta M; Kalcher I; Dzubiella J; Vrbka L; Netz RR
    J Chem Phys; 2010 Jan; 132(2):024911. PubMed ID: 20095713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Penetration without Enrichment: Simulations Show Ion Surface Propensities Consistent with Both Elevated Surface Tension and Surface Sensitive Spectroscopy.
    Li J; Wang F
    J Phys Chem B; 2019 Aug; 123(33):7197-7203. PubMed ID: 31361137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion solvation thermodynamics from simulation with a polarizable force field.
    Grossfield A; Ren P; Ponder JW
    J Am Chem Soc; 2003 Dec; 125(50):15671-82. PubMed ID: 14664617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic force field optimization based on single-ion and ion-pair solvation properties: going beyond standard mixing rules.
    Fyta M; Netz RR
    J Chem Phys; 2012 Mar; 136(12):124103. PubMed ID: 22462831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the hydration of mono-atomic anions from the gas phase to the bulk phase: the case of the halide ions F-, Cl-, and Br-.
    Trumm M; Martínez YO; Réal F; Masella M; Vallet V; Schimmelpfennig B
    J Chem Phys; 2012 Jan; 136(4):044509. PubMed ID: 22299893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force fields for divalent cations based on single-ion and ion-pair properties.
    Mamatkulov S; Fyta M; Netz RR
    J Chem Phys; 2013 Jan; 138(2):024505. PubMed ID: 23320702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions.
    Kann ZR; Skinner JL
    J Chem Phys; 2014 Sep; 141(10):104507. PubMed ID: 25217937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representation of Ion-Protein Interactions Using the Drude Polarizable Force-Field.
    Li H; Ngo V; Da Silva MC; Salahub DR; Callahan K; Roux B; Noskov SY
    J Phys Chem B; 2015 Jul; 119(29):9401-16. PubMed ID: 25578354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ions at hydrophobic interfaces.
    Levin Y; dos Santos AP
    J Phys Condens Matter; 2014 May; 26(20):203101. PubMed ID: 24769502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbation of second and farther hydration shells of alkali cations and bromide in concentrated aqueous protein as a water-shortage medium.
    Ohki T; Harada M; Okada T
    J Phys Chem B; 2008 Sep; 112(38):11863-7. PubMed ID: 18767772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration and speciation studies of Mn2+ in aqueous solution with simple monovalent anions (ClO4-, NO3-, Cl-, Br-).
    Rudolph WW; Irmer G
    Dalton Trans; 2013 Oct; 42(40):14460-72. PubMed ID: 23969599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasichemical and structural analysis of polarizable anion hydration.
    Rogers DM; Beck TL
    J Chem Phys; 2010 Jan; 132(1):014505. PubMed ID: 20078170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.