BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 26591455)

  • 1. Life history differences influence the impacts of drought on two pond-breeding salamanders.
    Anderson TL; Ousterhout BH; Peterman WE; Drake DL; Semlitsch RD
    Ecol Appl; 2015 Oct; 25(7):1896-910. PubMed ID: 26591455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking the evolution of habitat choice to ecosystem functioning: direct and indirect effects of pond-reproducing fire salamanders on aquatic-terrestrial subsidies.
    Reinhardt T; Steinfartz S; Paetzold A; Weitere M
    Oecologia; 2013 Sep; 173(1):281-91. PubMed ID: 23358795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abundance and phenology patterns of two pond-breeding salamanders determine species interactions in natural populations.
    Anderson TL; Hocking DJ; Conner CA; Earl JE; Harper EB; Osbourn MS; Peterman WE; Rittenhouse TAG; Semlitsch RD
    Oecologia; 2015 Mar; 177(3):761-773. PubMed ID: 25413866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of fine-scale forest habitat quality on movement and settling decisions in juvenile pond-breeding salamanders.
    Osbourn MS; Connette GM; Semlitsch RD
    Ecol Appl; 2014; 24(7):1719--29. PubMed ID: 29210233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iteroparity in the variable environment of the salamander Ambystoma tigrinum.
    Church DR; Bailey LL; Wilbur HM; Kendall WL; Hines JE
    Ecology; 2007 Apr; 88(4):891-903. PubMed ID: 17536706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive divergence vs. environmental plasticity: tracing local genetic adaptation of metamorphosis traits in salamanders.
    Weitere M; Tautz D; Neumann D; Steinfartz S
    Mol Ecol; 2004 Jun; 13(6):1665-77. PubMed ID: 15140109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of breeding phenology on the genetic structure of four pond-breeding salamanders.
    Burkhart JJ; Peterman WE; Brocato ER; Romine KM; Willis MMS; Ousterhout BH; Anderson TL; Drake DL; Rowland FE; Semlitsch RD; Eggert LS
    Ecol Evol; 2017 Jul; 7(13):4670-4681. PubMed ID: 28690797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Managing invasive hybrids with pond hydroperiod manipulation in an endangered salamander system.
    Cooper RD; Shaffer HB
    Conserv Biol; 2024 Apr; 38(2):e14167. PubMed ID: 37551773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Informed breeding dispersal following stochastic changes to patch quality in a pond-breeding amphibian.
    Barrile GM; Walters A; Webster M; Chalfoun AD
    J Anim Ecol; 2021 Aug; 90(8):1878-1890. PubMed ID: 33884620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermediate pond sizes contain the highest density, richness, and diversity of pond-breeding amphibians.
    Semlitsch RD; Peterman WE; Anderson TL; Drake DL; Ousterhout BH
    PLoS One; 2015; 10(4):e0123055. PubMed ID: 25906355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trait variation in patchy landscapes: Morphology of spotted salamanders (Ambystoma maculatum) varies more within ponds than between ponds.
    Green ET; Dell AI; Crawford JA; Biro EG; Daversa DR
    PLoS One; 2024; 19(4):e0299101. PubMed ID: 38573913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy flow and subsidies associated with the complex life cycle of ambystomatid salamanders in ponds and adjacent forest in southern Illinois.
    Regester KJ; Lips KR; Whiles MR
    Oecologia; 2006 Mar; 147(2):303-14. PubMed ID: 16200399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal differences in climate change explain a lack of multi-decadal shifts in population characteristics of a pond breeding salamander.
    Kirk MA; Galatowitsch ML; Wissinger SA
    PLoS One; 2019; 14(9):e0222097. PubMed ID: 31491025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A statistical forecasting approach to metapopulation viability analysis.
    Howell PE; Hossack BR; Muths E; Sigafus BH; Chenevert-Steffler A; Chandler RB
    Ecol Appl; 2020 Mar; 30(2):e02038. PubMed ID: 31709679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the Phenology of Pond-Breeding Amphibians to Develop Conservation Strategies.
    Paton PWC; Crouch WB
    Conserv Biol; 2002 Feb; 16(1):194-204. PubMed ID: 35701957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lethal effects of water quality on threatened California salamanders but not on co-occurring hybrid salamanders.
    Ryan ME; Johnson JR; Fitzpatrick BM; Lowenstine LJ; Picco AM; Shaffer HB
    Conserv Biol; 2013 Feb; 27(1):95-102. PubMed ID: 23140535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental dynamics of Ambystoma tigrinum in a changing landscape.
    McMenamin SK; Hadly EA
    BMC Ecol; 2010 Apr; 10():10. PubMed ID: 20361876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Managing farm ponds as breeding sites for amphibians: key trade-offs in agricultural function and habitat conservation.
    Swartz TM; Miller JR
    Ecol Appl; 2019 Oct; 29(7):e01964. PubMed ID: 31243830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Species-specific and temporal scale-dependent responses of birds to drought.
    Cady SM; O'Connell TJ; Loss SR; Jaffe NE; Davis CA
    Glob Chang Biol; 2019 Aug; 25(8):2691-2702. PubMed ID: 31025464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refuges and ecological traps: Extreme drought threatens persistence of an endangered fish in intermittent streams.
    Vander Vorste R; Obedzinski M; Nossaman Pierce S; Carlson SM; Grantham TE
    Glob Chang Biol; 2020 Jul; 26(7):3834-3845. PubMed ID: 32293095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.