These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26591459)

  • 1. I Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader.
    Smart AS; Tingley R; Weeks AR; van Rooyen AR; McCarthy MA
    Ecol Appl; 2015 Oct; 25(7):1944-52. PubMed ID: 26591459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traditional trapping methods outperform eDNA sampling for introduced semi-aquatic snakes.
    Rose JP; Wademan C; Weir S; Wood JS; Todd BD
    PLoS One; 2019; 14(7):e0219244. PubMed ID: 31265475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrent visual encounter sampling validates eDNA selectivity and sensitivity for the endangered wood turtle (Glyptemys insculpta).
    Akre TS; Parker LD; Ruther E; Maldonado JE; Lemmon L; McInerney NR
    PLoS One; 2019; 14(4):e0215586. PubMed ID: 31017960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using occupancy modelling to compare environmental DNA to traditional field methods for regional-scale monitoring of an endangered aquatic species.
    Schmelzle MC; Kinziger AP
    Mol Ecol Resour; 2016 Jul; 16(4):895-908. PubMed ID: 26677162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal variation in environmental DNA detection in sediment and water samples.
    Buxton AS; Groombridge JJ; Griffiths RA
    PLoS One; 2018; 13(1):e0191737. PubMed ID: 29352294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of Environmental DNA to Evaluate Northern Pike (Esox lucius) Eradication Efforts: An Experimental Test and Case Study.
    Dunker KJ; Sepulveda AJ; Massengill RL; Olsen JB; Russ OL; Wenburg JK; Antonovich A
    PLoS One; 2016; 11(9):e0162277. PubMed ID: 27626271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods.
    Hänfling B; Lawson Handley L; Read DS; Hahn C; Li J; Nichols P; Blackman RC; Oliver A; Winfield IJ
    Mol Ecol; 2016 Jul; 25(13):3101-19. PubMed ID: 27095076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sampling Designs for Landscape-level eDNA Monitoring Programs.
    Erickson RA; Merkes CM; Mize EL
    Integr Environ Assess Manag; 2019 Sep; 15(5):760-771. PubMed ID: 30963692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of an invasive aquatic plant in natural water bodies using environmental DNA.
    Anglès d'Auriac MB; Strand DA; Mjelde M; Demars BOL; Thaulow J
    PLoS One; 2019; 14(7):e0219700. PubMed ID: 31299064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental DNA (eDNA) sampling improves occurrence and detection estimates of invasive burmese pythons.
    Hunter ME; Oyler-McCance SJ; Dorazio RM; Fike JA; Smith BJ; Hunter CT; Reed RN; Hart KM
    PLoS One; 2015; 10(4):e0121655. PubMed ID: 25874630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clearing muddied waters: Capture of environmental DNA from turbid waters.
    Williams KE; Huyvaert KP; Piaggio AJ
    PLoS One; 2017; 12(7):e0179282. PubMed ID: 28686659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp.
    Williams MR; Stedtfeld RD; Engle C; Salach P; Fakher U; Stedtfeld T; Dreelin E; Stevenson RJ; Latimore J; Hashsham SA
    PLoS One; 2017; 12(10):e0186462. PubMed ID: 29036210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. eDNA metabarcoding: a promising method for anuran surveys in highly diverse tropical forests.
    Lopes CM; Sasso T; Valentini A; Dejean T; Martins M; Zamudio KR; Haddad CFB
    Mol Ecol Resour; 2017 Sep; 17(5):904-914. PubMed ID: 27987263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can environmental DNA (eDNA) be used for detection and monitoring of introduced crab species in the Baltic Sea?
    Forsström T; Vasemägi A
    Mar Pollut Bull; 2016 Aug; 109(1):350-355. PubMed ID: 27261280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a quantitative polymerase chain reaction assay and environmental DNA sampling methods for Giant Gartersnake (Thamnophis gigas).
    Schumer G; Hansen EC; Anders PJ; Blankenship SM
    PLoS One; 2019; 14(9):e0222493. PubMed ID: 31525228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental DNA (eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms.
    de Souza LS; Godwin JC; Renshaw MA; Larson E
    PLoS One; 2016; 11(10):e0165273. PubMed ID: 27776150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental DNA (eDNA): A tool for quantifying the abundant but elusive round goby (Neogobius melanostomus).
    Nevers MB; Byappanahalli MN; Morris CC; Shively D; Przybyla-Kelly K; Spoljaric AM; Dickey J; Roseman EF
    PLoS One; 2018; 13(1):e0191720. PubMed ID: 29357382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multispecies models reveal that eDNA metabarcoding is more sensitive than backpack electrofishing for conducting fish surveys in freshwater streams.
    McColl-Gausden EF; Weeks AR; Coleman RA; Robinson KL; Song S; Raadik TA; Tingley R
    Mol Ecol; 2021 Jul; 30(13):3111-3126. PubMed ID: 32966639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long distance (>20 km) downstream detection of endangered stream frogs suggests an important role for eDNA in surveying for remnant amphibian populations.
    Villacorta-Rath C; Hoskin CJ; Strugnell JM; Burrows D
    PeerJ; 2021; 9():e12013. PubMed ID: 34692243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is the detection of aquatic environmental DNA influenced by substrate type?
    Buxton AS; Groombridge JJ; Griffiths RA
    PLoS One; 2017; 12(8):e0183371. PubMed ID: 28813525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.