These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26592106)

  • 1. A Toolkit for the Analysis of Free-Energy Perturbation Calculations.
    Liu P; Dehez F; Cai W; Chipot C
    J Chem Theory Comput; 2012 Aug; 8(8):2606-16. PubMed ID: 26592106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting Free-Energy Perturbation Calculations with GPU-Accelerated NAMD.
    Chen H; Maia JDC; Radak BK; Hardy DJ; Cai W; Chipot C; Tajkhorshid E
    J Chem Inf Model; 2020 Nov; 60(11):5301-5307. PubMed ID: 32805108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.
    Ramadoss V; Dehez F; Chipot C
    J Chem Inf Model; 2016 Jun; 56(6):1122-6. PubMed ID: 27214306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Good practices in free-energy calculations.
    Pohorille A; Jarzynski C; Chipot C
    J Phys Chem B; 2010 Aug; 114(32):10235-53. PubMed ID: 20701361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alchemical Free Energy Differences in Flexible Molecules from Thermodynamic Integration or Free Energy Perturbation Combined with Driven Adiabatic Dynamics.
    Cuendet MA; Tuckerman ME
    J Chem Theory Comput; 2012 Oct; 8(10):3504-12. PubMed ID: 26592999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extended Adaptive Biasing Force Algorithm. An On-the-Fly Implementation for Accurate Free-Energy Calculations.
    Fu H; Shao X; Chipot C; Cai W
    J Chem Theory Comput; 2016 Aug; 12(8):3506-13. PubMed ID: 27398726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual substitution scan via single-step free energy perturbation.
    Chiang YC; Wang Y
    Biopolymers; 2016 Jun; 105(6):324-336. PubMed ID: 26850092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CaFE: a tool for binding affinity prediction using end-point free energy methods.
    Liu H; Hou T
    Bioinformatics; 2016 Jul; 32(14):2216-8. PubMed ID: 27153651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the efficiency and reliability of free energy perturbation calculations using overlap sampling methods.
    Lu N; Kofke DA; Woolf TB
    J Comput Chem; 2004 Jan; 25(1):28-39. PubMed ID: 14634991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation.
    Polyak I; Benighaus T; Boulanger E; Thiel W
    J Chem Phys; 2013 Aug; 139(6):064105. PubMed ID: 23947841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a quantum mechanics-based free-energy perturbation method: use in the calculation of relative solvation free energies.
    Reddy MR; Singh UC; Erion MD
    J Am Chem Soc; 2004 May; 126(20):6224-5. PubMed ID: 15149207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QM/MM Free-Energy Perturbation Compared to Thermodynamic Integration and Umbrella Sampling:  Application to an Enzymatic Reaction.
    Kästner J; Senn HM; Thiel S; Otte N; Thiel W
    J Chem Theory Comput; 2006 Mar; 2(2):452-61. PubMed ID: 26626532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimum MD simulation length required to achieve reliable results in free energy perturbation calculations: case study of relative binding free energies of fructose-1,6-bisphosphatase inhibitors.
    Rathore RS; Aparoy P; Reddanna P; Kondapi AK; Reddy MR
    J Comput Chem; 2011 Jul; 32(10):2097-103. PubMed ID: 21503928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy perturbation study of water dimer dissociation kinetics.
    Ming Y; Lai G; Tong C; Wood RH; Doren DJ
    J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations.
    Deng Y; Roux B
    J Chem Phys; 2008 Mar; 128(11):115103. PubMed ID: 18361618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.
    Fox SJ; Pittock C; Tautermann CS; Fox T; Christ C; Malcolm NO; Essex JW; Skylaris CK
    J Phys Chem B; 2013 Aug; 117(32):9478-85. PubMed ID: 23841453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free-energy differences between states with different conformational ensembles.
    Garate JA; Oostenbrink C
    J Comput Chem; 2013 Jun; 34(16):1398-408. PubMed ID: 23526629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing the Efficiency of Free Energy Calculations Using Parallel Tempering and Histogram Reweighting.
    Rick SW
    J Chem Theory Comput; 2006 Jul; 2(4):939-46. PubMed ID: 26633053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.