These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26592107)

  • 1. Development, Implementation, and Application of an Analytic Second Derivative Formalism for the Normalized Elimination of the Small Component Method.
    Zou W; Filatov M; Cremer D
    J Chem Theory Comput; 2012 Aug; 8(8):2617-29. PubMed ID: 26592107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and application of the analytical energy gradient for the normalized elimination of the small component method.
    Zou W; Filatov M; Cremer D
    J Chem Phys; 2011 Jun; 134(24):244117. PubMed ID: 21721622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connection between the regular approximation and the normalized elimination of the small component in relativistic quantum theory.
    Filatov M; Cremer D
    J Chem Phys; 2005 Feb; 122(6):064104. PubMed ID: 15740364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic calculation of second-order electric response properties with the normalized elimination of the small component (NESC) method.
    Zou W; Filatov M; Cremer D
    J Chem Phys; 2012 Aug; 137(8):084108. PubMed ID: 22938219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic calculation of nuclear magnetic shielding using normalized elimination of the small component.
    Kudo K; Maeda H; Kawakubo T; Ootani Y; Funaki M; Fukui H
    J Chem Phys; 2006 Jun; 124(22):224106. PubMed ID: 16784262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbative treatment of scalar-relativistic effects in coupled-cluster calculations of equilibrium geometries and harmonic vibrational frequencies using analytic second-derivative techniques.
    Michauk C; Gauss J
    J Chem Phys; 2007 Jul; 127(4):044106. PubMed ID: 17672680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct perturbation theory in terms of energy derivatives: fourth-order relativistic corrections at the Hartree-Fock level.
    Stopkowicz S; Gauss J
    J Chem Phys; 2011 Feb; 134(6):064114. PubMed ID: 21322668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic Calculation of Contact Densities and Mössbauer Isomer Shifts Using the Normalized Elimination of the Small-Component Formalism.
    Filatov M; Zou W; Cremer D
    J Chem Theory Comput; 2012 Mar; 8(3):875-82. PubMed ID: 26593349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method.
    Yoshizawa T; Zou W; Cremer D
    J Chem Phys; 2016 Nov; 145(18):184104. PubMed ID: 27846684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method.
    Yoshizawa T; Zou W; Cremer D
    J Chem Phys; 2017 Apr; 146(13):134109. PubMed ID: 28390341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general, recursive, and open-ended response code.
    Ringholm M; Jonsson D; Ruud K
    J Comput Chem; 2014 Mar; 35(8):622-33. PubMed ID: 24500816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytic second derivatives for the spin-free exact two-component theory.
    Cheng L; Gauss J
    J Chem Phys; 2011 Dec; 135(24):244104. PubMed ID: 22225141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculations of nuclear magnetic shielding constants based on the exact two-component relativistic method.
    Yoshizawa T; Hada M
    J Chem Phys; 2017 Oct; 147(15):154104. PubMed ID: 29055334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model.
    Hamaya S; Maeda H; Funaki M; Fukui H
    J Chem Phys; 2008 Dec; 129(22):224103. PubMed ID: 19071903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH.
    Straka M; Lantto P; Räsänen M; Vaara J
    J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical energy gradient for the two-component normalized elimination of the small component method.
    Zou W; Filatov M; Cremer D
    J Chem Phys; 2015 Jun; 142(21):214106. PubMed ID: 26049478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relativistic corrections to electrical first-order properties using direct perturbation theory.
    Stopkowicz S; Gauss J
    J Chem Phys; 2008 Oct; 129(16):164119. PubMed ID: 19045259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytic calculation of first-order molecular properties at the explicitly correlated second-order Moller-Plesset level: basis-set limits for the molecular quadrupole moments of BH and HF.
    Kordel E; Villani C; Klopper W
    J Chem Phys; 2005 Jun; 122(21):214306. PubMed ID: 15974737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A second-quantization framework for the unified treatment of relativistic and nonrelativistic molecular perturbations by response theory.
    Helgaker T; Hennum AC; Klopper W
    J Chem Phys; 2006 Jul; 125(2):24102. PubMed ID: 16848572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.