BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26592278)

  • 1. Revisiting the Nonadiabatic Process in 1,2-Dioxetane.
    Farahani P; Roca-Sanjuán D; Zapata F; Lindh R
    J Chem Theory Comput; 2013 Dec; 9(12):5404-11. PubMed ID: 26592278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemiluminescence of 1,2-dioxetane. Reaction mechanism uncovered.
    Vico LD; Liu YJ; Krogh JW; Lindh R
    J Phys Chem A; 2007 Aug; 111(32):8013-9. PubMed ID: 17636973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 1. Full configuration interaction (CI) excited-state relaxation dynamics of hydrated dielectrons.
    Larsen RE; Schwartz BJ
    J Phys Chem B; 2006 May; 110(19):9681-91. PubMed ID: 16686519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical Insights into the Decomposition of 1,2-Dioxetane.
    Vacher M; Brakestad A; Karlsson HO; Fdez Galván I; Lindh R
    J Chem Theory Comput; 2017 Jun; 13(6):2448-2457. PubMed ID: 28437611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Do Methyl Groups Enhance the Triplet Chemiexcitation Yield of Dioxetane?
    Vacher M; Farahani P; Valentini A; Frutos LM; Karlsson HO; Fdez Galván I; Lindh R
    J Phys Chem Lett; 2017 Aug; 8(16):3790-3794. PubMed ID: 28749694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum yields of singlet and triplet chemiexcitation of dimethyl 1,2-dioxetane: ab initio nonadiabatic molecular dynamic simulations.
    Yue L; Yu L; Xu C; Zhu C; Liu Y
    Phys Chem Chem Phys; 2020 May; 22(20):11440-11451. PubMed ID: 32390027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonadiabatic effects in C-Br bond scission in the photodissociation of bromoacetyl chloride.
    Valero R; Truhlar DG
    J Chem Phys; 2006 Nov; 125(19):194305. PubMed ID: 17129101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio multiple spawning dynamics using multi-state second-order perturbation theory.
    Tao H; Levine BG; Martínez TJ
    J Phys Chem A; 2009 Dec; 113(49):13656-62. PubMed ID: 19888736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photophysics of cytosine tautomers: new insights into the nonradiative decay mechanisms from MS-CASPT2 potential energy calculations and excited-state molecular dynamics simulations.
    Nakayama A; Harabuchi Y; Yamazaki S; Taketsugu T
    Phys Chem Chem Phys; 2013 Aug; 15(29):12322-39. PubMed ID: 23779067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unimolecular Decomposition Mechanism of 1,2-Dioxetanedione: Concerted or Biradical? That is the Question!
    Farahani P; Baader WJ
    J Phys Chem A; 2017 Feb; 121(6):1189-1194. PubMed ID: 28094939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodissociation dynamics of methoxybenzoic acid at 193 nm.
    Ho YC; Dyakov YA; Hsu WH; Ni CK; Sun YL; Hu WP
    J Chem Phys; 2012 Nov; 137(19):194309. PubMed ID: 23181308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonadiabatic reaction of energetic molecules.
    Bhattacharya A; Guo Y; Bernstein ER
    Acc Chem Res; 2010 Dec; 43(12):1476-85. PubMed ID: 20931955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined nonadiabatic transition-state theory and ab initio molecular dynamics study on selectivity of the alpha and beta bond fissions in photodissociation of bromoacetyl chloride.
    Zhang F; Ding WJ; Fang WH
    J Chem Phys; 2006 Nov; 125(18):184305. PubMed ID: 17115750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct dynamics simulation of dioxetane formation and decomposition via the singlet ·O-O-CH2-CH2· biradical: non-RRKM dynamics.
    Sun R; Park K; de Jong WA; Lischka H; Windus TL; Hase WL
    J Chem Phys; 2012 Jul; 137(4):044305. PubMed ID: 22852616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics investigations of ozone on an ab initio potential energy surface with the utilization of pattern-recognition neural network for accurate determination of product formation.
    Le HM; Dinh TS; Le HV
    J Phys Chem A; 2011 Oct; 115(40):10862-70. PubMed ID: 21888438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulsed laser photolysis and quantum chemical-statistical rate study of the reaction of the ethynyl radical with water vapor.
    Carl SA; Nguyen HM; Elsamra RM; Nguyen MT; Peeters J
    J Chem Phys; 2005 Mar; 122(11):114307. PubMed ID: 15836215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the dynamics of the C(3P,1D) + C2H2 reactions by the crossed molecular beam scattering technique.
    Leonori F; Petrucci R; Segoloni E; Bergeat A; Hickson KM; Balucani N; Casavecchia P
    J Phys Chem A; 2008 Feb; 112(7):1363-79. PubMed ID: 18229899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.
    Koch DM; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):636-49. PubMed ID: 18183959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes.
    Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG
    Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.