These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26592279)

  • 1. Reconsidering Dispersion Potentials: Reduced Cutoffs in Mesh-Based Ewald Solvers Can Be Faster Than Truncation.
    Isele-Holder RE; Mitchell W; Hammond JR; Kohlmeyer A; Ismail AE
    J Chem Theory Comput; 2013 Dec; 9(12):5412-20. PubMed ID: 26592279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions.
    Isele-Holder RE; Mitchell W; Ismail AE
    J Chem Phys; 2012 Nov; 137(17):174107. PubMed ID: 23145717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilevel summation for dispersion: a linear-time algorithm for r(-6) potentials.
    Tameling D; Springer P; Bientinesi P; Ismail AE
    J Chem Phys; 2014 Jan; 140(2):024105. PubMed ID: 24437863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the truncation of long-range electrostatic interactions in DNA.
    Norberg J; Nilsson L
    Biophys J; 2000 Sep; 79(3):1537-53. PubMed ID: 10969015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaussian split Ewald: A fast Ewald mesh method for molecular simulation.
    Shan Y; Klepeis JL; Eastwood MP; Dror RO; Shaw DE
    J Chem Phys; 2005 Feb; 122(5):54101. PubMed ID: 15740304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Efficient Linear-Scaling Ewald Method for Long-Range Electrostatic Interactions in Combined QM/MM Calculations.
    Nam K; Gao J; York DM
    J Chem Theory Comput; 2005 Jan; 1(1):2-13. PubMed ID: 26641110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics.
    Fennell CJ; Gezelter JD
    J Chem Phys; 2006 Jun; 124(23):234104. PubMed ID: 16821904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable evaluation of polarization energy and associated forces in polarizable molecular dynamics: II. Toward massively parallel computations using smooth particle mesh Ewald.
    Lagardère L; Lipparini F; Polack É; Stamm B; Cancès É; Schnieders M; Ren P; Maday Y; Piquemal JP
    J Chem Theory Comput; 2015 Jun; 11(6):2589-99. PubMed ID: 26575557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extension and evaluation of the multilevel summation method for fast long-range electrostatics calculations.
    Moore SG; Crozier PS
    J Chem Phys; 2014 Jun; 140(23):234112. PubMed ID: 24952528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local response dispersion method. II. Generalized multicenter interactions.
    Sato T; Nakai H
    J Chem Phys; 2010 Nov; 133(19):194101. PubMed ID: 21090848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lennard-Jones Lattice Summation in Bilayer Simulations Has Critical Effects on Surface Tension and Lipid Properties.
    Wennberg CL; Murtola T; Hess B; Lindahl E
    J Chem Theory Comput; 2013 Aug; 9(8):3527-37. PubMed ID: 26584109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of MDGRAPE-3, a special purpose board for molecular dynamics simulations, to periodic biomolecular systems.
    Kikugawa G; Apostolov R; Kamiya N; Taiji M; Himeno R; Nakamura H; Yonezawa Y
    J Comput Chem; 2009 Jan; 30(1):110-8. PubMed ID: 18524021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple and accurate scheme to compute electrostatic interaction: zero-dipole summation technique for molecular system and application to bulk water.
    Fukuda I; Kamiya N; Yonezawa Y; Nakamura H
    J Chem Phys; 2012 Aug; 137(5):054314. PubMed ID: 22894355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ENUF method-Ewald summation based on nonuniform fast Fourier transform: Implementation, parallelization, and application.
    Yang SC; Li B; Zhu YL; Laaksonen A; Wang YL
    J Comput Chem; 2020 Oct; 41(27):2316-2335. PubMed ID: 32808686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amorphous silica modeled with truncated and screened Coulomb interactions: a molecular dynamics simulation study.
    Carré A; Berthier L; Horbach J; Ispas S; Kob W
    J Chem Phys; 2007 Sep; 127(11):114512. PubMed ID: 17887862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Numerical Accuracy of Ewald, Smooth Particle Mesh Ewald, and Staggered Mesh Ewald Methods for Correlated Molecular Systems.
    Wang H; Zhang P; Schütte C
    J Chem Theory Comput; 2012 Sep; 8(9):3243-56. PubMed ID: 26605733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the smooth particle mesh Ewald sum: application on ionic solutions and dipolar fluids.
    Linse B; Linse P
    J Chem Phys; 2014 Nov; 141(18):184114. PubMed ID: 25399139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Case Study of Truncated Electrostatics for Simulation of Polyelectrolyte Brushes on GPU Accelerators.
    Nguyen TD; Carrillo JM; Dobrynin AV; Brown WM
    J Chem Theory Comput; 2013 Jan; 9(1):73-83. PubMed ID: 26589011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Implementation of the Smooth Particle Mesh Ewald Method on GPU Hardware.
    Harvey MJ; De Fabritiis G
    J Chem Theory Comput; 2009 Sep; 5(9):2371-7. PubMed ID: 26616618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Origin of Layer Structure Artifacts in Simulations of Liquid Water.
    van der Spoel D; van Maaren PJ
    J Chem Theory Comput; 2006 Jan; 2(1):1-11. PubMed ID: 26626372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.