These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26592401)

  • 1. Quadrupolar NMR Spin Relaxation Calculated Using Ab Initio Molecular Dynamics: Group 1 and Group 17 Ions in Aqueous Solution.
    Badu S; Truflandier L; Autschbach J
    J Chem Theory Comput; 2013 Sep; 9(9):4074-86. PubMed ID: 26592401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quadrupolar NMR Relaxation from ab Initio Molecular Dynamics: Improved Sampling and Cluster Models versus Periodic Calculations.
    Philips A; Marchenko A; Truflandier LA; Autschbach J
    J Chem Theory Comput; 2017 Sep; 13(9):4397-4409. PubMed ID: 28719202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate quadrupolar NMR relaxation rates of aqueous cations from classical molecular dynamics.
    Carof A; Salanne M; Charpentier T; Rotenberg B
    J Phys Chem B; 2014 Nov; 118(46):13252-7. PubMed ID: 25340813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the solvent shell with 195Pt chemical shifts: density functional theory molecular dynamics study of Pt(II) and Pt(IV) anionic complexes in aqueous solution.
    Truflandier LA; Autschbach J
    J Am Chem Soc; 2010 Mar; 132(10):3472-83. PubMed ID: 20166712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR Relaxation Rates of Quadrupolar Aqueous Ions from Classical Molecular Dynamics Using Force-Field Specific Sternheimer Factors.
    Chubak I; Scalfi L; Carof A; Rotenberg B
    J Chem Theory Comput; 2021 Oct; 17(10):6006-6017. PubMed ID: 34570493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water.
    Carof A; Salanne M; Charpentier T; Rotenberg B
    J Chem Phys; 2015 Nov; 143(19):194504. PubMed ID: 26590539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quadrupolar NMR Relaxation of Aqueous
    Philips A; Autschbach J
    J Chem Theory Comput; 2020 Sep; 16(9):5835-5844. PubMed ID: 32786904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantum mechanics/molecular dynamics study of electric field gradient fluctuations in the liquid phase. The case of Na+ in aqueous solution.
    Aidas K; Ågren H; Kongsted J; Laaksonen A; Mocci F
    Phys Chem Chem Phys; 2013 Feb; 15(5):1621-31. PubMed ID: 23247548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric field gradients in Hg compounds: molecular orbital (MO) analysis and comparison of 4-component and 2-component (ZORA) methods.
    Arcisauskaite V; Knecht S; Sauer SP; Hemmingsen L
    Phys Chem Chem Phys; 2012 Dec; 14(46):16070-9. PubMed ID: 23111689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.
    Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ
    J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR J-coupling constants in cisplatin derivatives studied by molecular dynamics and relativistic DFT.
    Sutter K; Truflandier LA; Autschbach J
    Chemphyschem; 2011 Jun; 12(8):1448-55. PubMed ID: 21381179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quadrupolar
    Philips A; Marchenko A; Ducati LC; Autschbach J
    J Chem Theory Comput; 2019 Jan; 15(1):509-519. PubMed ID: 30462503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collective water dynamics in the first solvation shell drive the NMR relaxation of aqueous quadrupolar cations.
    Carof A; Salanne M; Charpentier T; Rotenberg B
    J Chem Phys; 2016 Sep; 145(12):124508. PubMed ID: 27782645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent effects and dynamic averaging of 195Pt NMR shielding in cisplatin derivatives.
    Truflandier LA; Sutter K; Autschbach J
    Inorg Chem; 2011 Mar; 50(5):1723-32. PubMed ID: 21204547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of lanthanum coordination compounds by using solid-state 139La NMR spectroscopy and relativistic density functional theory.
    Willans MJ; Feindel KW; Ooms KJ; Wasylishen RE
    Chemistry; 2005 Dec; 12(1):159-68. PubMed ID: 16224769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-state (185/187)Re NMR and GIPAW DFT study of perrhenates and Re2(CO)10: chemical shift anisotropy, NMR crystallography, and a metal-metal bond.
    Widdifield CM; Perras FA; Bryce DL
    Phys Chem Chem Phys; 2015 Apr; 17(15):10118-34. PubMed ID: 25790263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic and relativistic effects on Pt-Pt indirect spin-spin coupling in aqueous solution studied by ab initio molecular dynamics and two- vs four-component density functional NMR calculations.
    Batista PR; Ducati LC; Autschbach J
    J Chem Phys; 2024 Mar; 160(11):. PubMed ID: 38497474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An NMR and relativistic DFT investigation of one-bond nuclear spin-spin coupling in solid triphenyl group-14 chlorides.
    Willans MJ; Demko BA; Wasylishen RE
    Phys Chem Chem Phys; 2006 Jun; 8(23):2733-43. PubMed ID: 16763706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gauge-independent zeroth-order regular approximation to the exact relativistic Hamiltonian--formulation and applications.
    Filatov M; Cremer D
    J Chem Phys; 2005 Jan; 122(4):44104. PubMed ID: 15740232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ions in solutions: Determining their polarizabilities from first-principles.
    Molina JJ; Lectez S; Tazi S; Salanne M; Dufrêche JF; Roques J; Simoni E; Madden PA; Turq P
    J Chem Phys; 2011 Jan; 134(1):014511. PubMed ID: 21219011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.