These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related]
3. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells. Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654 [TBL] [Abstract][Full Text] [Related]
4. Porous vitalium-base nano-composite for bone replacement: Fabrication, mechanical, and in vitro biological properties. Dehaghani MT; Ahmadian M J Mech Behav Biomed Mater; 2016 Apr; 57():297-309. PubMed ID: 26874088 [TBL] [Abstract][Full Text] [Related]
5. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related]
6. Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance. Gao C; Liu T; Shuai C; Peng S Sci Rep; 2014 Apr; 4():4712. PubMed ID: 24736662 [TBL] [Abstract][Full Text] [Related]
7. A Biomimetic Material with a High Bio-responsibility for Bone Reconstruction and Tissue Engineering. Chen X; Meng Y; Wang Y; Du C; Yang C J Biomater Sci Polym Ed; 2011; 22(1-3):153-63. PubMed ID: 20546681 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Kolan KC; Leu MC; Hilmas GE; Brown RF; Velez M Biofabrication; 2011 Jun; 3(2):025004. PubMed ID: 21636879 [TBL] [Abstract][Full Text] [Related]
9. On the role of alginate coating on the mechanical and biological properties of 58S bioactive glass scaffolds. Keshavarz M; Alizadeh P Int J Biol Macromol; 2021 Jan; 167():947-961. PubMed ID: 33186647 [TBL] [Abstract][Full Text] [Related]
11. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Weber N; Lee YS; Shanmugasundaram S; Jaffe M; Arinzeh TL Acta Biomater; 2010 Sep; 6(9):3550-6. PubMed ID: 20371302 [TBL] [Abstract][Full Text] [Related]
12. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering. Erol MM; Mouriňo V; Newby P; Chatzistavrou X; Roether JA; Hupa L; Boccaccini AR Acta Biomater; 2012 Feb; 8(2):792-801. PubMed ID: 22040685 [TBL] [Abstract][Full Text] [Related]
13. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering. Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328 [TBL] [Abstract][Full Text] [Related]
15. Reticulated bioactive scaffolds with improved textural properties for bone tissue engineering: nanostructured surfaces and porosity. Ramiro-Gutiérrez ML; Will J; Boccaccini AR; Díaz-Cuenca A J Biomed Mater Res A; 2014 Sep; 102(9):2982-92. PubMed ID: 24123840 [TBL] [Abstract][Full Text] [Related]
16. Introducing an attractive method for total biomimetic creation of a synthetic biodegradable bioactive bone scaffold based on statistical experimental design. Shahbazi S; Zamanian A; Pazouki M; Jafari Y Mater Sci Eng C Mater Biol Appl; 2018 May; 86():109-120. PubMed ID: 29525086 [TBL] [Abstract][Full Text] [Related]
17. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds. Zhang H; Ye XJ; Li JS Biomed Mater; 2009 Aug; 4(4):045007. PubMed ID: 19605959 [TBL] [Abstract][Full Text] [Related]
18. Improvement in degradability of 58s glass scaffolds by ZnO and β-TCP modification. Shuai C; Cao Y; Dan G; Gao C; Feng P; Wu P Bioengineered; 2016 Sep; 7(5):342-351. PubMed ID: 27710432 [TBL] [Abstract][Full Text] [Related]
19. Sacrificial template method for the synthesis of three-dimensional nanofibrous 58S bioglass scaffold and its in vitro bioactivity and cell responses. Luo H; Zhang Y; Li G; Tu J; Yang Z; Xiong G; Wang Z; Huang Y; Wan Y J Biomater Appl; 2017 Aug; 32(2):265-275. PubMed ID: 28618977 [TBL] [Abstract][Full Text] [Related]
20. Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles. Novajra G; Boetti NG; Lousteau J; Fiorilli S; Milanese D; Vitale-Brovarone C Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():570-580. PubMed ID: 27287156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]