BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26592577)

  • 1. Gold nanoclusters-based chemiluminescence resonance energy transfer method for sensitive and label-free detection of trypsin.
    You X; Li Y; Li B; Ma J
    Talanta; 2016 Jan; 147():63-8. PubMed ID: 26592577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters.
    Hu L; Han S; Parveen S; Yuan Y; Zhang L; Xu G
    Biosens Bioelectron; 2012 Feb; 32(1):297-9. PubMed ID: 22209331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic enzyme mimicking activity of gold nanoclusters upon visible light triggering and its application for colorimetric trypsin detection.
    Wang GL; Jin LY; Dong YM; Wu XM; Li ZJ
    Biosens Bioelectron; 2015 Feb; 64():523-9. PubMed ID: 25310483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A "turn-on" fluorescent sensor for ozone detection in ambient air using protein-directed gold nanoclusters.
    Wu D; Qi W; Liu C; Zhang Q
    Anal Bioanal Chem; 2017 Apr; 409(10):2539-2546. PubMed ID: 28124753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free, non-derivatization CRET detection platform for 6-mercaptopurine based on the distance-dependent optical properties of gold nanoparticles.
    Du J; Wang Y; Zhang W
    Chemistry; 2012 Jul; 18(27):8540-6. PubMed ID: 22639371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CdSe quantum dots-sensitized chemiluminescence system and quenching effect of gold nanoclusters for cyanide detection.
    Vahid B; Hassanzadeh J; Khodakarami B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():322-329. PubMed ID: 30669095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoparticles-based chemiluminescence resonance energy transfer for ultrasensitive detection of melamine.
    Du J; Wang Y; Zhang W
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():698-702. PubMed ID: 25988815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bovine serum albumin-capped gold nanoclusters conjugating with methylene blue for efficient
    Yamamoto M; Shitomi K; Miyata S; Miyaji H; Aota H; Kawasaki H
    J Colloid Interface Sci; 2018 Jan; 510():221-227. PubMed ID: 28946047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of residual rifampicin in urine via fluorescence quenching of gold nanoclusters on paper.
    Chatterjee K; Kuo CW; Chen A; Chen P
    J Nanobiotechnology; 2015 Jun; 13():46. PubMed ID: 26113082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune-independent and label-free fluorescent assay for Cystatin C detection based on protein-stabilized Au nanoclusters.
    Lin H; Li L; Lei C; Xu X; Nie Z; Guo M; Huang Y; Yao S
    Biosens Bioelectron; 2013 Mar; 41():256-61. PubMed ID: 23017686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation-induced structure transition of protein-stabilized zinc/copper nanoclusters for amplified chemiluminescence.
    Chen H; Lin L; Li H; Li J; Lin JM
    ACS Nano; 2015 Feb; 9(2):2173-83. PubMed ID: 25647180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive detection of cyanide using bovine serum albumin-stabilized cerium/gold nanoclusters.
    Wang CW; Chen YN; Wu BY; Lee CK; Chen YC; Huang YH; Chang HT
    Anal Bioanal Chem; 2016 Jan; 408(1):287-94. PubMed ID: 26507328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicolor Biosensor for Trypsin Detection Based on the Regulation of the Peroxidase Activity of Bovine Serum Albumin-Coated Gold Nanoclusters and Etching of Gold Nanobipyramids.
    Luo Q; Tian M; Luo F; Zhao M; Lin C; Qiu B; Wang J; Lin Z
    Anal Chem; 2023 Jan; 95(4):2390-2397. PubMed ID: 36638045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A label-free fluorescent assay for free chlorine in drinking water based on protein-stabilized gold nanoclusters.
    Xiong X; Tang Y; Zhang L; Zhao S
    Talanta; 2015 Jan; 132():790-5. PubMed ID: 25476379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label free and homogeneous histone sensing based on chemiluminescence resonance energy transfer between lucigenin and gold nanoparticles.
    He Y; Cui H
    Biosens Bioelectron; 2013 Sep; 47():313-7. PubMed ID: 23603126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence quenching for chloramphenicol detection in milk based on protein-stabilized Au nanoclusters.
    Tan Z; Xu H; Li G; Yang X; Choi MM
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():615-20. PubMed ID: 25985125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive chemiluminescence assay for cimetidine detection based on the synergistic improving effect of Au nanoclusters and graphene quantum dots.
    Yousefzadeh A; Abolhasani J; Hassanzadeh J; Somi MH
    Luminescence; 2019 Mar; 34(2):261-271. PubMed ID: 30724006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytotoxicity of BSA-Stabilized Gold Nanoclusters: In Vitro and In Vivo Study.
    Dong L; Li M; Zhang S; Li J; Shen G; Tu Y; Zhu J; Tao J
    Small; 2015 Jun; 11(21):2571-81. PubMed ID: 25630756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine.
    Li L; Liu H; Shen Y; Zhang J; Zhu JJ
    Anal Chem; 2011 Feb; 83(3):661-5. PubMed ID: 21226463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation-induced emission: a simple strategy to improve chemiluminescence resonance energy transfer.
    Zhang L; He N; Lu C
    Anal Chem; 2015 Jan; 87(2):1351-7. PubMed ID: 25526522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.