These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26592588)

  • 1. Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection.
    Qi P; Zhang D; Zeng Y; Wan Y
    Talanta; 2016 Jan; 147():142-6. PubMed ID: 26592588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Synthesis and spectral studies of functionalized L-Cys-CdS nanoparticles as fluorescence probes].
    Dai ML; Yan ZY; Pang DW; Shao XF; Qu P; Zhao JT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Aug; 26(8):1503-7. PubMed ID: 17058957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel sulfate-reducing bacteria detection method based on inhibition of cysteine protease activity.
    Qi P; Zhang D; Wan Y
    Talanta; 2014 Nov; 129():270-5. PubMed ID: 25127594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronous fluorescence determination of mercury ion with glutathione-capped CdS nanoparticles as a fluorescence probe.
    Liang AN; Wang L; Chen HQ; Qian BB; Ling B; Fu J
    Talanta; 2010 Apr; 81(1-2):438-43. PubMed ID: 20188943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfate-reducing bacteria detection based on the photocatalytic property of microbial synthesized ZnS nanoparticles.
    Qi P; Zhang D; Wan Y
    Anal Chim Acta; 2013 Oct; 800():65-70. PubMed ID: 24120169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly selective turn-on ATP fluorescence sensor based on unmodified cysteamine capped CdS quantum dots.
    Tedsana W; Tuntulani T; Ngeontae W
    Anal Chim Acta; 2013 Jun; 783():65-73. PubMed ID: 23726101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of a novel nitric oxide fluorescent probe CdS-PMMA nanocomposite via in-situ bulk polymerization.
    Ding L; Li T; Zhong Y; Fan C; Huang J
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():29-35. PubMed ID: 24411348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and optical characterization of single phased ZnS:Mn²⁺/CdS core-shell nanoparticles.
    Murugadoss G; Ramasamy V
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():70-4. PubMed ID: 22465770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of CdS nanoparticles in switchable surfactant reverse micelles.
    Jiang J; He Y; Wan L; Cui Z; Cui Z; Jessop PG
    Chem Commun (Camb); 2013 Mar; 49(19):1912-4. PubMed ID: 23235352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasensitive determination of silver ion based on synchronous fluorescence spectroscopy with nanoparticles.
    Wang L; Liang AN; Chen HQ; Liu Y; Qian BB; Fu J
    Anal Chim Acta; 2008 Jun; 616(2):170-6. PubMed ID: 18482600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective turn-on fluorescence sensor for Ag+ using cysteamine capped CdS quantum dots: determination of free Ag+ in silver nanoparticles solution.
    Khantaw T; Boonmee C; Tuntulani T; Ngeontae W
    Talanta; 2013 Oct; 115():849-56. PubMed ID: 24054673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of ciprofloxacin with functionalized cadmium sulfide nanoparticles as a fluorescence probe.
    Li D; Yan ZY; Cheng WQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1204-11. PubMed ID: 18455470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization and biocompatibility of cadmium sulfide nanoparticles capped with dextrin for in vivo and in vitro imaging application.
    Reyes-Esparza J; Martínez-Mena A; Gutiérrez-Sancha I; Rodríguez-Fragoso P; de la Cruz GG; Mondragón R; Rodríguez-Fragoso L
    J Nanobiotechnology; 2015 Nov; 13():83. PubMed ID: 26577398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories.
    Plaza DO; Gallardo C; Straub YD; Bravo D; Pérez-Donoso JM
    Microb Cell Fact; 2016 May; 15():76. PubMed ID: 27154202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles.
    Ma J; Tai G; Guo W
    Ultrason Sonochem; 2010 Mar; 17(3):534-40. PubMed ID: 20006938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and application of L-cysteine-modified CdSe/CdS core/shell nanocrystals as a novel fluorescence probe for detection of nucleic acid.
    Huang F; Chen G
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):318-23. PubMed ID: 17954036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for the synthesis of CdS nanoparticles without surfactant.
    Ghows N; Entezari MH
    Ultrason Sonochem; 2011 Jan; 18(1):269-75. PubMed ID: 20638317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct synthesis of water-soluble ultrathin CdS nanorods and reversible tuning of the solubility by alkalinity.
    Zhuang Z; Lu X; Peng Q; Li Y
    J Am Chem Soc; 2010 Feb; 132(6):1819-21. PubMed ID: 20102210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of CdS nanoparticles: An improved green and rapid procedure.
    Prasad K; Jha AK
    J Colloid Interface Sci; 2010 Feb; 342(1):68-72. PubMed ID: 19880131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorometric sensing of ultralow As(III) concentrations using Ag doped hollow CdS/ZnS bi-layer nanoparticles.
    Boxi SS; Paria S
    Dalton Trans; 2015 Dec; 44(47):20464-74. PubMed ID: 26541652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.