These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26592748)

  • 1. Subject-Specific Computational Modeling of Evoked Rabbit Phonation.
    Chang S; Novaleski CK; Kojima T; Mizuta M; Luo H; Rousseau B
    J Biomech Eng; 2016 Jan; 138(1):0110051-6. PubMed ID: 26592748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of one-dimensional and three-dimensional glottal flow models in left-right asymmetric vocal fold conditions.
    Yoshinaga T; Zhang Z; Iida A
    J Acoust Soc Am; 2022 Nov; 152(5):2557. PubMed ID: 36456298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonstimulated rabbit phonation model: Cricothyroid approximation.
    Novaleski CK; Kojima T; Chang S; Luo H; Valenzuela CV; Rousseau B
    Laryngoscope; 2016 Jul; 126(7):1589-94. PubMed ID: 26971861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of phonatory characteristics using ex vivo rabbit larynges.
    Döllinger M; Kniesburges S; Berry DA; Birk V; Wendler O; Dürr S; Alexiou C; Schützenberger A
    J Acoust Soc Am; 2018 Jul; 144(1):142. PubMed ID: 30075689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A one-dimensional flow model enhanced by machine learning for simulation of vocal fold vibration.
    Li Z; Chen Y; Chang S; Rousseau B; Luo H
    J Acoust Soc Am; 2021 Mar; 149(3):1712. PubMed ID: 33765799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vocal instabilities in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2018 Sep; 144(3):1216. PubMed ID: 30424612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of gradients in vocal fold elastic modulus on phonation.
    Bhattacharya P; Kelleher JE; Siegmund T
    J Biomech; 2015 Sep; 48(12):3356-63. PubMed ID: 26159059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subject-Specific Computational Fluid-Structure Interaction Modeling of Rabbit Vocal Fold Vibration.
    Avhad A; Li Z; Wilson A; Sayce L; Chang S; Rousseau B; Luo H
    Fluids (Basel); 2022 Mar; 7(3):. PubMed ID: 35480340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional biomechanical properties of human vocal folds: parameter optimization of a numerical model to match in vitro dynamics.
    Yang A; Berry DA; Kaltenbacher M; Döllinger M
    J Acoust Soc Am; 2012 Feb; 131(2):1378-90. PubMed ID: 22352511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2017 Oct; 142(4):2311. PubMed ID: 29092586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reduced-order flow model for vocal fold vibration: from idealized to subject-specific models.
    Chen Y; Li Z; Chang S; Rousseau B; Luo H
    J Fluids Struct; 2020 Apr; 94():. PubMed ID: 32210520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Reduced-Order Flow Model for Fluid-Structure Interaction Simulation of Vocal Fold Vibration.
    Li Z; Chen Y; Chang S; Luo H
    J Biomech Eng; 2020 Feb; 142(2):0210051-02100510. PubMed ID: 31201740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the Paraglottic Space on Voice Production in an MRI-Based Vocal Fold Model.
    Wu L; Zhang Z
    J Voice; 2023 Jul; 37(4):633.e15-633.e23. PubMed ID: 33752927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Computational Study of Vocal Fold Dehydration During Phonation.
    Wu L; Zhang Z
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2938-2948. PubMed ID: 28391188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Longitudinal Variation of Vocal Fold Inner Layer Thickness on Fluid-Structure Interaction During Voice Production.
    Jiang W; Xue Q; Zheng X
    J Biomech Eng; 2018 Dec; 140(12):1210081-9. PubMed ID: 30098145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling of vibration-induced systemic hydration of vocal folds over a range of phonation conditions.
    Bhattacharya P; Siegmund T
    Int J Numer Method Biomed Eng; 2014 Oct; 30(10):1019-43. PubMed ID: 24760548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.