These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26592945)

  • 21. Quadrupole central transition 17O NMR spectroscopy of biological macromolecules in aqueous solution.
    Zhu J; Wu G
    J Am Chem Soc; 2011 Feb; 133(4):920-32. PubMed ID: 21175170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure determination of biological macromolecules in solution using nuclear magnetic resonance spectroscopy.
    Wider G
    Biotechniques; 2000 Dec; 29(6):1278-82, 1284-90, 1292 passim. PubMed ID: 11126132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High resolution 4D HPCH experiment for sequential assignment of (13)C-labeled RNAs via phosphodiester backbone.
    Saxena S; Stanek J; Cevec M; Plavec J; Koźmiński W
    J Biomol NMR; 2015 Nov; 63(3):291-8. PubMed ID: 26409925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spin-state-selective methods in solution- and solid-state biomolecular 13C NMR.
    Felli IC; Pierattelli R
    Prog Nucl Magn Reson Spectrosc; 2015 Feb; 84-85():1-13. PubMed ID: 25669738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonuniform Sampling for NMR Spectroscopy.
    Robson S; Arthanari H; Hyberts SG; Wagner G
    Methods Enzymol; 2019; 614():263-291. PubMed ID: 30611427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins.
    Zawadzka-Kazimierczuk A; Koźmiński W; Sanderová H; Krásný L
    J Biomol NMR; 2012 Apr; 52(4):329-37. PubMed ID: 22350953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving resolution in multidimensional NMR using random quadrature detection with compressed sensing reconstruction.
    Bostock MJ; Holland DJ; Nietlispach D
    J Biomol NMR; 2017 Jun; 68(2):67-77. PubMed ID: 27650957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined frequency- and time-domain NMR spectroscopy. Application to fast protein resonance assignment.
    Brutscher B
    J Biomol NMR; 2004 May; 29(1):57-64. PubMed ID: 15017139
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solid-state nuclear magnetic resonance structural studies of proteins using paramagnetic probes.
    Jaroniec CP
    Solid State Nucl Magn Reson; 2012; 43-44():1-13. PubMed ID: 22464402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NMR spectroscopy: an excellent tool to understand RNA and carbohydrate recognition by proteins.
    Cléry A; Schubert M; Allain FH
    Chimia (Aarau); 2012; 66(10):741-6. PubMed ID: 23146258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy.
    Lorieau JL; McDermott AE
    J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast protein backbone NMR resonance assignment using the BATCH strategy.
    Brutscher B; Lescop E
    Methods Mol Biol; 2012; 831():407-28. PubMed ID: 22167685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in protein NMR spectroscopy and their implications in protein therapeutics research.
    Wang G; Zhang ZT; Jiang B; Zhang X; Li C; Liu M
    Anal Bioanal Chem; 2014 Apr; 406(9-10):2279-88. PubMed ID: 24309626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clean absorption mode NMR data acquisition based on time-proportional phase incrementation.
    Wu Y; Ghosh A; Szyperski T
    J Struct Funct Genomics; 2009 Sep; 10(3):227-32. PubMed ID: 19499349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quadrupole-central-transition 17O NMR spectroscopy of protein-ligand complexes in solution.
    Zhu J; Kwan IC; Wu G
    J Am Chem Soc; 2009 Oct; 131(40):14206-7. PubMed ID: 19764760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applications of NMR to structure determination of RNAs large and small.
    Barnwal RP; Yang F; Varani G
    Arch Biochem Biophys; 2017 Aug; 628():42-56. PubMed ID: 28600200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TROSY-based correlation and NOE spectroscopy for NMR structural studies of large proteins.
    Zhu G; Xia Y; Lin D; Gao X
    Methods Mol Biol; 2004; 278():57-78. PubMed ID: 15317991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A polynomial-time algorithm for de novo protein backbone structure determination from nuclear magnetic resonance data.
    Wang L; Mettu RR; Donald BR
    J Comput Biol; 2006 Sep; 13(7):1267-88. PubMed ID: 17037958
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Present and future of NMR for RNA-protein complexes: a perspective of integrated structural biology.
    Carlomagno T
    J Magn Reson; 2014 Apr; 241():126-36. PubMed ID: 24656085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional dynamics of proteins revealed by solution NMR.
    Osawa M; Takeuchi K; Ueda T; Nishida N; Shimada I
    Curr Opin Struct Biol; 2012 Oct; 22(5):660-9. PubMed ID: 23000032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.