These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 26592971)

  • 21. One body, two hands: photocatalytic function- and Fenton effect-integrated light-driven micromotors for pollutant degradation.
    Wang J; Dong R; Yang Q; Wu H; Bi Z; Liang Q; Wang Q; Wang C; Mei Y; Cai Y
    Nanoscale; 2019 Sep; 11(35):16592-16598. PubMed ID: 31460538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-propelled micromotors based on Au-mesoporous silica nanorods.
    Wang YS; Xia H; Lv C; Wang L; Dong WF; Feng J; Sun HB
    Nanoscale; 2015 Jul; 7(28):11951-5. PubMed ID: 26132881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-propelled activated carbon Janus micromotors for efficient water purification.
    Jurado-Sánchez B; Sattayasamitsathit S; Gao W; Santos L; Fedorak Y; Singh VV; Orozco J; Galarnyk M; Wang J
    Small; 2015 Jan; 11(4):499-506. PubMed ID: 25207503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergistic Speed Enhancement of an Electric-Photochemical Hybrid Micromotor by Tilt Rectification.
    Xiao Z; Duan S; Xu P; Cui J; Zhang H; Wang W
    ACS Nano; 2020 Jul; 14(7):8658-8667. PubMed ID: 32530617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vapor-Driven Propulsion of Catalytic Micromotors.
    Dong R; Li J; Rozen I; Ezhilan B; Xu T; Christianson C; Gao W; Saintillan D; Ren B; Wang J
    Sci Rep; 2015 Aug; 5():13226. PubMed ID: 26285032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visible-Light-Driven Water-Fueled Ecofriendly Micromotors Based on Iron Phthalocyanine for Highly Efficient Organic Pollutant Degradation.
    Tong J; Wang D; Wang D; Xu F; Duan R; Zhang D; Fan J; Dong B
    Langmuir; 2020 Jun; 36(25):6930-6937. PubMed ID: 31604011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradable magnesium fuel-based Janus micromotors with surfactant induced motion direction reversal.
    Zhao Z; Si T; Kozelskaya AI; Akimchenko IO; Tverdokhlebov SI; Rutkowski S; Frueh J
    Colloids Surf B Biointerfaces; 2022 Oct; 218():112780. PubMed ID: 35988310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Motility Visible Light-Driven Ag/AgCl Janus Micromotors.
    Wang X; Baraban L; Nguyen A; Ge J; Misko VR; Tempere J; Nori F; Formanek P; Huang T; Cuniberti G; Fassbender J; Makarov D
    Small; 2018 Nov; 14(48):e1803613. PubMed ID: 30369029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water-driven micromotors.
    Gao W; Pei A; Wang J
    ACS Nano; 2012 Sep; 6(9):8432-8. PubMed ID: 22891973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Propulsion of Urease-Powered Micromotors by Multilayered Assembly of Ureases on Janus Magnetic Microparticles.
    Luo M; Li S; Wan J; Yang C; Chen B; Guan J
    Langmuir; 2020 Feb; ():. PubMed ID: 32023066
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermoresponsive Polymer Brush Modulation on the Direction of Motion of Phoretically Driven Janus Micromotors.
    Ji Y; Lin X; Zhang H; Wu Y; Li J; He Q
    Angew Chem Int Ed Engl; 2019 Mar; 58(13):4184-4188. PubMed ID: 30701642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visible-Light-Driven Asymmetric TiO
    Noh W; Jo S; Kim J; Lee TS
    Langmuir; 2021 May; 37(20):6301-6310. PubMed ID: 33982566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled one-sided growth of Janus TiO
    Ge Y; Wang T; Zheng M; Jiang Z; Wang S
    Nanotechnology; 2019 Aug; 30(31):315702. PubMed ID: 30991364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photochemically Powered AgCl Janus Micromotors as a Model System to Understand Ionic Self-Diffusiophoresis.
    Zhou C; Zhang HP; Tang J; Wang W
    Langmuir; 2018 Mar; 34(10):3289-3295. PubMed ID: 29436833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Buoyant force-induced continuous floating and sinking of Janus micromotors.
    Wu M; Koizumi Y; Nishiyama H; Tomita I; Inagi S
    RSC Adv; 2018 Sep; 8(58):33331-33337. PubMed ID: 35548146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motion-based, high-yielding, and fast separation of different charged organics in water.
    Xuan M; Lin X; Shao J; Dai L; He Q
    Chemphyschem; 2015 Jan; 16(1):147-51. PubMed ID: 25413002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ZnO-based microrockets with light-enhanced propulsion.
    Dong R; Wang C; Wang Q; Pei A; She X; Zhang Y; Cai Y
    Nanoscale; 2017 Oct; 9(39):15027-15032. PubMed ID: 28967007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Six-Degree-of-Freedom Steerable Visible-Light-Driven Microsubmarines Using Water as a Fuel: Application for Explosives Decontamination.
    Ying Y; Plutnar J; Pumera M
    Small; 2021 Jun; 17(23):e2100294. PubMed ID: 33945209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. "Shoot and Sense" Janus Micromotors-Based Strategy for the Simultaneous Degradation and Detection of Persistent Organic Pollutants in Food and Biological Samples.
    Rojas D; Jurado-Sánchez B; Escarpa A
    Anal Chem; 2016 Apr; 88(7):4153-60. PubMed ID: 26938969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of pH on the Motion of Catalytic Janus Particles and Tubular Bubble-Propelled Micromotors.
    Moo JG; Wang H; Pumera M
    Chemistry; 2016 Jan; 22(1):355-60. PubMed ID: 26526004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.