These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26592974)

  • 1. Thermomechanical Stress in Cryopreservation Via Vitrification With Nanoparticle Heating as a Stress-Moderating Effect.
    Eisenberg DP; Bischof JC; Rabin Y
    J Biomech Eng; 2016 Jan; 138(1):. PubMed ID: 26592974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermomechanical stress analysis of rabbit kidney and human kidney during cryopreservation by vitrification with the application of radiofrequency heating.
    Solanki PK; Rabin Y
    Cryobiology; 2021 Jun; 100():180-192. PubMed ID: 33412158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A guide to successful mL to L scale vitrification and rewarming.
    Gangwar L; Phatak SS; Etheridge M; Bischof JC
    Cryo Letters; 2022; 43(6):316-321. PubMed ID: 36629824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermo-mechanical stress analysis of cryopreservation in cryobags and the potential benefit of nanowarming.
    Solanki PK; Bischof JC; Rabin Y
    Cryobiology; 2017 Jun; 76():129-139. PubMed ID: 28192076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of crystallization during rewarming in suboptimal vitrification conditions: a semi-empirical approach.
    Joshi P; Rabin Y
    Cryobiology; 2021 Dec; 103():70-80. PubMed ID: 34543621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic induction heating of superparamagnetic nanoparticles during rewarming augments the recovery of hUCM-MSCs cryopreserved by vitrification.
    Wang J; Zhao G; Zhang Z; Xu X; He X
    Acta Biomater; 2016 Mar; 33():264-74. PubMed ID: 26802443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling Effects on the Residual Thermomechanical Stress During Ice-Free Cooling to Storage Temperature.
    Solanki PK; Rabin Y
    J Appl Mech; 2020 Oct; 87(10):101003. PubMed ID: 34168384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Analyses of Nanowarming-Assisted Recovery of the Heart From Cryopreservation by Vitrification.
    Joshi P; Ehrlich LE; Gao Z; Bischof JC; Rabin Y
    J Heat Transfer; 2022 Mar; 144(3):031202. PubMed ID: 35833152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal analysis of marginal conditions to facilitate cryopreservation by vitrification using a semi-empirical approach.
    Joshi P; Rabin Y
    Cryobiology; 2019 Dec; 91():128-136. PubMed ID: 31526802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conduction Cooling and Plasmonic Heating Dramatically Increase Droplet Vitrification Volumes for Cell Cryopreservation.
    Zhan L; Guo SZ; Kangas J; Shao Q; Shiao M; Khosla K; Low WC; McAlpine MC; Bischof J
    Adv Sci (Weinh); 2021 Jun; 8(11):2004605. PubMed ID: 34141523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles.
    Manuchehrabadi N; Gao Z; Zhang J; Ring HL; Shao Q; Liu F; McDermott M; Fok A; Rabin Y; Brockbank KG; Garwood M; Haynes CL; Bischof JC
    Sci Transl Med; 2017 Mar; 9(379):. PubMed ID: 28251904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conductivity of cryoprotective agents loaded with nanoparticles, with application to recovery of preserved tissues and organs from cryogenic storage.
    Ehrlich LE; Gao Z; Bischof JC; Rabin Y
    PLoS One; 2020; 15(9):e0238941. PubMed ID: 32941483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryopreservation by vitrification: a promising approach for transplant organ banking.
    Finger EB; Bischof JC
    Curr Opin Organ Transplant; 2018 Jun; 23(3):353-360. PubMed ID: 29702495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryopreservation of carotid artery segments via vitrification subject to marginal thermal conditions: correlation of freezing visualization with functional recovery.
    Baicu S; Taylor MJ; Chen Z; Rabin Y
    Cryobiology; 2008 Aug; 57(1):1-8. PubMed ID: 18490009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical investigation into thermal effects of pre-cooling zone in vitrification-based cryopreservation process.
    Tsai HH; Tsai CH; Wu WT; Chen FZ; Chiang PJ
    Cryobiology; 2015 Feb; 70(1):32-7. PubMed ID: 25481669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitrification and Nanowarming of Kidneys.
    Sharma A; Rao JS; Han Z; Gangwar L; Namsrai B; Gao Z; Ring HL; Magnuson E; Etheridge M; Wowk B; Fahy GM; Garwood M; Finger EB; Bischof JC
    Adv Sci (Weinh); 2021 Oct; 8(19):e2101691. PubMed ID: 34382371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 'Personalisation' of droplet-vitrification protocols for plant cells: a systematic approach to optimising chemical and osmotic effects.
    Kim HH; Lee SC
    Cryo Letters; 2012; 33(4):271-9. PubMed ID: 22987238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigations of transient heat transfer characteristics and vitrification tendencies in ultra-fast cell cooling processes.
    Jiao A; Han X; Critser JK; Ma H
    Cryobiology; 2006 Jun; 52(3):386-92. PubMed ID: 16616118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new cryomacroscope device (Type III) for visualization of physical events in cryopreservation with applications to vitrification and synthetic ice modulators.
    Rabin Y; Taylor MJ; Feig JS; Baicu S; Chen Z
    Cryobiology; 2013 Dec; 67(3):264-73. PubMed ID: 23993920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a droplet-vitrification protocol for cryopreservation of Rubia akane (Nakai) hairy roots using a systematic approach.
    Kim HH; Popova EV; Shin DJ; Bae CH; Baek HJ; Park SU; Engelmann F
    Cryo Letters; 2012; 33(6):506-17. PubMed ID: 23250410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.