These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 26593050)

  • 1. Native Point Defects in CaS: Focus on Intrinsic Defects and Rare Earth Ion Dopant Levels for Up-converted Persistent Luminescence.
    Huang B
    Inorg Chem; 2015 Dec; 54(23):11423-40. PubMed ID: 26593050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling energy conversion modeling in the intrinsic persistent upconverted luminescence of solids: a study of native point defects in antiferromagnetic Er2O3.
    Huang B
    Phys Chem Chem Phys; 2016 May; 18(19):13564-82. PubMed ID: 27140724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic Stabilities, Electronic Properties, and Optical Transitions of Intrinsic Defects and Lanthanide Ions (Ce
    Wen J; Guo Z; Guo H; Ning L; Duan CK; Huang Y; Zhan S; Yin M
    Inorg Chem; 2018 May; 57(10):6142-6151. PubMed ID: 29741880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic and Dopant-Related Luminescence of Undoped and Tb Plus Tm Double-Doped Lithium Magnesium Phosphate (LiMgPO
    Gieszczyk W; Bilski P; Mrozik A; Kłosowski M; Marczewska B; Sas-Bieniarz A; Perzanowski M; Zorenko T; Zorenko Y
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32349255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy harvesting and conversion mechanisms for intrinsic upconverted mechano-persistent luminescence in CaZnOS.
    Huang B
    Phys Chem Chem Phys; 2016 Sep; 18(37):25946-25974. PubMed ID: 27711528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on Molecular Structure and Electronic Properties of Ln
    Yin Z; Li M; Zhang J; Shen Q
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33806037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doping of RE ions in the 2D ZnO layered system to achieve low-dimensional upconverted persistent luminescence based on asymmetric doping in ZnO systems.
    Huang B
    Phys Chem Chem Phys; 2017 May; 19(20):12683-12711. PubMed ID: 28475187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistent Luminescence Hole-Type Materials by Design: Transition-Metal-Doped Carbon Allotrope and Carbides.
    Qu B; Zhang B; Wang L; Zhou R; Zeng XC; Li L
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5439-44. PubMed ID: 26849004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopy and calculations for 4f(N) → 4f(N-1)5d transitions of lanthanide ions in K3YF6.
    Ma CG; Brik MG; Ryba-Romanowski W; Swart HC; Gusowski MA
    J Phys Chem A; 2012 Sep; 116(36):9158-80. PubMed ID: 22881828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Luminescence Mechanistic Study of BaLaGa3O7:Nd Using Density Functional Theory Calculations.
    Meng J; Liu X; Sun C; Yao C; Zhang L; Yao F; Xue D; Meng J; Zhang H
    Inorg Chem; 2016 Mar; 55(6):2855-63. PubMed ID: 26954844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lanthanide-doped CaS and SrS luminescent nanocrystals: a single-source precursor approach for doping.
    Zhao Y; Rabouw FT; van Puffelen T; van Walree CA; Gamelin DR; de Mello Donegá C; Meijerink A
    J Am Chem Soc; 2014 Nov; 136(47):16533-43. PubMed ID: 25368972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen vacancy formation energy in Pd-doped ceria: a DFT+U study.
    Yang Z; Luo G; Lu Z; Hermansson K
    J Chem Phys; 2007 Aug; 127(7):074704. PubMed ID: 17718624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetic stability, oxidation states, and electronic structure of Bi-doped NaTaO3: a first-principles hybrid functional study.
    Joo PH; Behtash M; Yang K
    Phys Chem Chem Phys; 2016 Jan; 18(2):857-65. PubMed ID: 26646215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Luminescence properties of undoped LiBaAlF6 single crystals.
    Omelkov SI; Kirm M; Feldbach E; Pustovarov VA; Cholakh SO; Isaenko LI
    J Phys Condens Matter; 2010 Jul; 22(29):295504. PubMed ID: 21399311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of point defects in PbS, PbSe and PbTe: a first principles study.
    Li WF; Fang CM; Dijkstra M; van Huis MA
    J Phys Condens Matter; 2015 Sep; 27(35):355801. PubMed ID: 26290521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DFT+U study of defects in bulk rutile TiO(2).
    Stausholm-Møller J; Kristoffersen HH; Hinnemann B; Madsen GK; Hammer B
    J Chem Phys; 2010 Oct; 133(14):144708. PubMed ID: 20950031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Band-Edge Engineering To Eliminate Radiation-Induced Defect States in Perovskite Scintillators.
    Liu XY; Pilania G; Talapatra AA; Stanek CR; Uberuaga BP
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46296-46305. PubMed ID: 32938183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of Blue-Green Emission in α-Zn
    Gupta SK; Ghosh PS; Yadav AK; Jha SN; Bhattacharyya D; Kadam RM
    Inorg Chem; 2017 Jan; 56(1):167-178. PubMed ID: 27966936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Band gap engineering of bulk ZrO2 by Ti doping.
    Gallino F; Di Valentin C; Pacchioni G
    Phys Chem Chem Phys; 2011 Oct; 13(39):17667-75. PubMed ID: 21897973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations.
    Di Valentin C; Pacchioni G
    Acc Chem Res; 2014 Nov; 47(11):3233-41. PubMed ID: 24828320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.