These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26593196)

  • 1. Exploring Potential Energy Surfaces of Large Systems with Artificial Force Induced Reaction Method in Combination with ONIOM and Microiteration.
    Maeda S; Abe E; Hatanaka M; Taketsugu T; Morokuma K
    J Chem Theory Comput; 2012 Dec; 8(12):5058-63. PubMed ID: 26593196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Automated and Systematic Transition Structure Explorer in Large Flexible Molecular Systems Based on Combined Global Reaction Route Mapping and Microiteration Methods.
    Maeda S; Ohno K; Morokuma K
    J Chem Theory Comput; 2009 Oct; 5(10):2734-43. PubMed ID: 26631786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multistructural microiteration technique for geometry optimization and reaction path calculation in large systems.
    Suzuki K; Morokuma K; Maeda S
    J Comput Chem; 2017 Oct; 38(26):2213-2221. PubMed ID: 28643353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring transition state structures for intramolecular pathways by the artificial force induced reaction method.
    Maeda S; Taketsugu T; Morokuma K
    J Comput Chem; 2014 Jan; 35(2):166-73. PubMed ID: 24186858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Catalysis Using the Artificial Force Induced Reaction Method.
    Sameera WM; Maeda S; Morokuma K
    Acc Chem Res; 2016 Apr; 49(4):763-73. PubMed ID: 27023677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces.
    Maeda S; Harabuchi Y; Takagi M; Taketsugu T; Morokuma K
    Chem Rec; 2016 Oct; 16(5):2232-2248. PubMed ID: 27258568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistructural microiteration combined with QM/MM-ONIOM electrostatic embedding.
    Suzuki K; Maeda S
    Phys Chem Chem Phys; 2022 Jul; 24(27):16762-16773. PubMed ID: 35775395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation and performance of the artificial force induced reaction method in the GRRM17 program.
    Maeda S; Harabuchi Y; Takagi M; Saita K; Suzuki K; Ichino T; Sumiya Y; Sugiyama K; Ono Y
    J Comput Chem; 2018 Feb; 39(4):233-251. PubMed ID: 29135034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conical Intersection Optimization Using Composed Steps Inside the ONIOM(QM:MM) Scheme: CASSCF:UFF Implementation with Microiterations.
    Ruiz-Barragan S; Morokuma K; Blancafort L
    J Chem Theory Comput; 2015 Apr; 11(4):1585-94. PubMed ID: 26574368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of water in Mukaiyama-Aldol reaction catalyzed by lanthanide lewis acid: a computational study.
    Hatanaka M; Morokuma K
    J Am Chem Soc; 2013 Sep; 135(37):13972-9. PubMed ID: 24006879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein Free Energy Corrections in ONIOM QM:MM Modeling: A Case Study for Isopenicillin N Synthase (IPNS).
    Kawatsu T; Lundberg M; Morokuma K
    J Chem Theory Comput; 2011 Feb; 7(2):390-401. PubMed ID: 26596161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finding Reaction Pathways of Type A + B → X: Toward Systematic Prediction of Reaction Mechanisms.
    Maeda S; Morokuma K
    J Chem Theory Comput; 2011 Aug; 7(8):2335-45. PubMed ID: 26606607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mechanism of Iron(II)-Catalyzed Asymmetric Mukaiyama Aldol Reaction in Aqueous Media: Density Functional Theory and Artificial Force-Induced Reaction Study.
    Sameera WM; Hatanaka M; Kitanosono T; Kobayashi S; Morokuma K
    J Am Chem Soc; 2015 Sep; 137(34):11085-94. PubMed ID: 26267294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods.
    Maeda S; Ohno K; Morokuma K
    Phys Chem Chem Phys; 2013 Mar; 15(11):3683-701. PubMed ID: 23389653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Predicting Full Catalytic Cycle Using Automatic Reaction Path Search Method: A Case Study on HCo(CO)3-Catalyzed Hydroformylation.
    Maeda S; Morokuma K
    J Chem Theory Comput; 2012 Feb; 8(2):380-5. PubMed ID: 26596590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating steepest-descent reaction pathways for large molecules.
    Hratchian HP; Frisch MJ
    J Chem Phys; 2011 May; 134(20):204103. PubMed ID: 21639420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sampling of Transition States for Predicting Diastereoselectivity Using Automated Search Method-Aqueous Lanthanide-Catalyzed Mukaiyama Aldol Reaction.
    Hatanaka M; Maeda S; Morokuma K
    J Chem Theory Comput; 2013 Jul; 9(7):2882-6. PubMed ID: 26583972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unimolecular Reaction Pathways of a γ-Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods.
    Grambow CA; Jamal A; Li YP; Green WH; Zádor J; Suleimanov YV
    J Am Chem Soc; 2018 Jan; 140(3):1035-1048. PubMed ID: 29271202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QM:QM electronic embedding using Mulliken atomic charges: energies and analytic gradients in an ONIOM framework.
    Hratchian HP; Parandekar PV; Raghavachari K; Frisch MJ; Vreven T
    J Chem Phys; 2008 Jan; 128(3):034107. PubMed ID: 18205488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.