These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26593196)

  • 21. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of Automated Reaction Path Search Methods to a Systematic Search of Single-Bond Activation Pathways Catalyzed by Small Metal Clusters: A Case Study on H-H Activation by Gold.
    Gao M; Lyalin A; Maeda S; Taketsugu T
    J Chem Theory Comput; 2014 Apr; 10(4):1623-30. PubMed ID: 26580374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transition States in a Protein Environment - ONIOM QM:MM Modeling of Isopenicillin N Synthesis.
    Lundberg M; Kawatsu T; Vreven T; Frisch MJ; Morokuma K
    J Chem Theory Comput; 2009 Jan; 5(1):222-34. PubMed ID: 26609836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined Molecular Dynamics and Coordinate Driving Method for Automatic Reaction Pathway Search of Reactions in Solution.
    Yang M; Yang L; Wang G; Zhou Y; Xie D; Li S
    J Chem Theory Comput; 2018 Nov; 14(11):5787-5796. PubMed ID: 30351922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. QM/MM Reweighting Free Energy SCF for Geometry Optimization on Extensive Free Energy Surface of Enzymatic Reaction.
    Kosugi T; Hayashi S
    J Chem Theory Comput; 2012 Jan; 8(1):322-34. PubMed ID: 26592893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.
    Gutzler R; Stepanow S; Grumelli D; Lingenfelder M; Kern K
    Acc Chem Res; 2015 Jul; 48(7):2132-9. PubMed ID: 26121410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A microiterative intrinsic reaction coordinate method for large QM/MM systems.
    Polyak I; Boulanger E; Sen K; Thiel W
    Phys Chem Chem Phys; 2013 Sep; 15(34):14188-95. PubMed ID: 23799539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Some Mathematical Reasoning on the Artificial Force Induced Reaction Method.
    Quapp W; Bofill JM
    J Comput Chem; 2020 Mar; 41(7):629-634. PubMed ID: 31792984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving the QM/MM Description of Chemical Processes:  A Dual Level Strategy To Explore the Potential Energy Surface in Very Large Systems.
    Martí S; Moliner V; Tuñón I
    J Chem Theory Comput; 2005 Sep; 1(5):1008-16. PubMed ID: 26641916
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial Force Induced Reaction Method for Systematic Determination of Complex Reaction Mechanisms.
    Sameera WM; Kumar Sharma A; Maeda S; Morokuma K
    Chem Rec; 2016 Oct; 16(5):2349-2363. PubMed ID: 27492586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions.
    Rosta E; Klähn M; Warshel A
    J Phys Chem B; 2006 Feb; 110(6):2934-41. PubMed ID: 16471904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tests of an adaptive QM/MM calculation on free energy profiles of chemical reactions in solution.
    Várnai C; Bernstein N; Mones L; Csányi G
    J Phys Chem B; 2013 Oct; 117(40):12202-11. PubMed ID: 24033146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finding Minimum Structures on the Seam of Crossing in Reactions of Type A + B → X: Exploration of Nonadiabatic Ignition Pathways of Unsaturated Hydrocarbons.
    Maeda S; Saito R; Morokuma K
    J Phys Chem Lett; 2011 Apr; 2(8):852-7. PubMed ID: 26295618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring potential energy surfaces for chemical reactions: an overview of some practical methods.
    Schlegel HB
    J Comput Chem; 2003 Sep; 24(12):1514-27. PubMed ID: 12868114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrostatic Potential-Based Method of Balancing Charge Transfer Across ONIOM QM:QM Boundaries.
    Jovan Jose KV; Raghavachari K
    J Chem Theory Comput; 2014 Oct; 10(10):4351-9. PubMed ID: 26588132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finding mechanochemical pathways and barriers without transition state search.
    Avdoshenko SM; Makarov DE
    J Chem Phys; 2015 May; 142(17):174106. PubMed ID: 25956089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. QM/MM methods for biomolecular systems.
    Senn HM; Thiel W
    Angew Chem Int Ed Engl; 2009; 48(7):1198-229. PubMed ID: 19173328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient Computational Research Protocol to Survey Free Energy Surface for Solution Chemical Reaction in the QM/MM Framework: The FEG-ER Methodology and Its Application to Isomerization Reaction of Glycine in Aqueous Solution.
    Takenaka N; Kitamura Y; Nagaoka M
    J Phys Chem B; 2016 Mar; 120(8):2001-11. PubMed ID: 26794718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A free-energy perturbation method based on Monte Carlo simulations using quantum mechanical calculations (QM/MC/FEP method): application to highly solvent-dependent reactions.
    Hori K; Yamaguchi T; Uezu K; Sumimoto M
    J Comput Chem; 2011 Apr; 32(5):778-86. PubMed ID: 21341291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method.
    Heyden A; Bell AT; Keil FJ
    J Chem Phys; 2005 Dec; 123(22):224101. PubMed ID: 16375464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.