BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26593325)

  • 1. Skeletal muscle Ca(2+) mishandling: Another effect of bone-to-muscle signaling.
    Regan JN; Waning DL; Guise TA
    Semin Cell Dev Biol; 2016 Jan; 49():24-9. PubMed ID: 26593325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of TGFβ in Bone-Muscle Crosstalk.
    Regan JN; Trivedi T; Guise TA; Waning DL
    Curr Osteoporos Rep; 2017 Feb; 15(1):18-23. PubMed ID: 28161871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excess TGF-β mediates muscle weakness associated with bone metastases in mice.
    Waning DL; Mohammad KS; Reiken S; Xie W; Andersson DC; John S; Chiechi A; Wright LE; Umanskaya A; Niewolna M; Trivedi T; Charkhzarrin S; Khatiwada P; Wronska A; Haynes A; Benassi MS; Witzmann FA; Zhen G; Wang X; Cao X; Roodman GD; Marks AR; Guise TA
    Nat Med; 2015 Nov; 21(11):1262-1271. PubMed ID: 26457758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A TGF-β pathway associated with cancer cachexia.
    Guttridge DC
    Nat Med; 2015 Nov; 21(11):1248-9. PubMed ID: 26540384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrosative modifications of the Ca2+ release complex and actin underlie arthritis-induced muscle weakness.
    Yamada T; Fedotovskaya O; Cheng AJ; Cornachione AS; Minozzo FC; Aulin C; Fridén C; Turesson C; Andersson DC; Glenmark B; Lundberg IE; Rassier DE; Westerblad H; Lanner JT
    Ann Rheum Dis; 2015 Oct; 74(10):1907-14. PubMed ID: 24854355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca(2+) sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle.
    Pouvreau S; Royer L; Yi J; Brum G; Meissner G; Ríos E; Zhou J
    Proc Natl Acad Sci U S A; 2007 Mar; 104(12):5235-40. PubMed ID: 17360329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle Weakness in Rheumatoid Arthritis: The Role of Ca
    Yamada T; Steinz MM; Kenne E; Lanner JT
    EBioMedicine; 2017 Sep; 23():12-19. PubMed ID: 28781131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling.
    Cheng W; Altafaj X; Ronjat M; Coronado R
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19225-30. PubMed ID: 16357209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure.
    Reiken S; Lacampagne A; Zhou H; Kherani A; Lehnart SE; Ward C; Huang F; Gaburjakova M; Gaburjakova J; Rosemblit N; Warren MS; He KL; Yi GH; Wang J; Burkhoff D; Vassort G; Marks AR
    J Cell Biol; 2003 Mar; 160(6):919-28. PubMed ID: 12629052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene profiling of embryonic skeletal muscle lacking type I ryanodine receptor Ca(2+) release channel.
    Filipova D; Walter AM; Gaspar JA; Brunn A; Linde NF; Ardestani MA; Deckert M; Hescheler J; Pfitzer G; Sachinidis A; Papadopoulos S
    Sci Rep; 2016 Feb; 6():20050. PubMed ID: 26831464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two ryanodine receptor isoforms in nonmammalian vertebrate skeletal muscle: possible roles in excitation-contraction coupling and other processes.
    Murayama T; Kurebayashi N
    Prog Biophys Mol Biol; 2011 May; 105(3):134-44. PubMed ID: 21029746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.
    Beard NA; Wei L; Dulhunty AF
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):340-5. PubMed ID: 19278523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Communication from Skeletal Muscle to Bone: A Review for Muscle-Derived Myokines Regulating Bone Metabolism.
    Guo B; Zhang ZK; Liang C; Li J; Liu J; Lu A; Zhang BT; Zhang G
    Calcif Tissue Int; 2017 Feb; 100(2):184-192. PubMed ID: 27830278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imperatoxin a enhances Ca(2+) release in developing skeletal muscle containing ryanodine receptor type 3.
    Nabhani T; Zhu X; Simeoni I; Sorrentino V; Valdivia HH; García J
    Biophys J; 2002 Mar; 82(3):1319-28. PubMed ID: 11867448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional signaling between calcium channels of skeletal muscle requires multiple direct and indirect interactions.
    Sheridan DC; Takekura H; Franzini-Armstrong C; Beam KG; Allen PD; Perez CF
    Proc Natl Acad Sci U S A; 2006 Dec; 103(52):19760-5. PubMed ID: 17172444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of ryanodine receptors.
    Ogawa Y
    Crit Rev Biochem Mol Biol; 1994; 29(4):229-74. PubMed ID: 8001396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers.
    Beqollari D; Romberg CF; Filipova D; Meza U; Papadopoulos S; Bannister RA
    J Gen Physiol; 2015 Jul; 146(1):97-108. PubMed ID: 26078055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of the calmodulin-dependent inhibition of the RyR1 calcium release channel upon oxidation of methionines in calmodulin.
    Boschek CB; Jones TE; Smallwood HS; Squier TC; Bigelow DJ
    Biochemistry; 2008 Jan; 47(1):131-42. PubMed ID: 18076146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defects in ryanodine receptor calcium release in skeletal muscle from post-myocardial infarct rats.
    Ward CW; Reiken S; Marks AR; Marty I; Vassort G; Lacampagne A
    FASEB J; 2003 Aug; 17(11):1517-9. PubMed ID: 12824280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteolytic Breast Cancer Causes Skeletal Muscle Weakness in an Immunocompetent Syngeneic Mouse Model.
    Regan JN; Mikesell C; Reiken S; Xu H; Marks AR; Mohammad KS; Guise TA; Waning DL
    Front Endocrinol (Lausanne); 2017; 8():358. PubMed ID: 29312148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.