These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 26593568)

  • 21. Mid-infrared spectrometry of milk for dairy metabolomics: a comparison of two sampling techniques and effect of homogenization.
    Aernouts B; Polshin E; Saeys W; Lammertyn J
    Anal Chim Acta; 2011 Oct; 705(1-2):88-97. PubMed ID: 21962352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of peppercorn, pepper oil, and pepper oleoresin by vibrational spectroscopy methods.
    Schulz H; Baranska M; Quilitzsch R; Schütze W; Lösing G
    J Agric Food Chem; 2005 May; 53(9):3358-63. PubMed ID: 15853372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular pathology via IR and Raman spectral imaging.
    Diem M; Mazur A; Lenau K; Schubert J; Bird B; Miljković M; Krafft C; Popp J
    J Biophotonics; 2013 Dec; 6(11-12):855-86. PubMed ID: 24311233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sample presentation, sources of error and future perspectives on the application of vibrational spectroscopy in the wine industry.
    Cozzolino D
    J Sci Food Agric; 2015 Mar; 95(5):861-8. PubMed ID: 24816857
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vibrational spectroscopy in stem cell characterisation: is there a niche?
    Sulé-Suso J; Forsyth NR; Untereiner V; Sockalingum GD
    Trends Biotechnol; 2014 May; 32(5):254-62. PubMed ID: 24703620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Raman micro-spectroscopy: a powerful tool for the monitoring of dynamic supramolecular changes in living cells.
    Caponi S; Liguori L; Giugliarelli A; Mattarelli M; Morresi A; Sassi P; Urbanelli L; Musio C
    Biophys Chem; 2013 Dec; 182():58-63. PubMed ID: 23850174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Overview of the Successful Application of Vibrational Spectroscopy Techniques to Quantify Nutraceuticals in Fruits and Plants.
    Cozzolino D
    Foods; 2022 Jan; 11(3):. PubMed ID: 35159466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Infrared and Raman imaging for characterizing complex biological materials: a comparative morpho-spectroscopic study of colon tissue.
    Nallala J; Piot O; Diebold MD; Gobinet C; Bouché O; Manfait M; Sockalingum GD
    Appl Spectrosc; 2014; 68(1):57-68. PubMed ID: 24405955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimating fatty acid content in cow milk using mid-infrared spectrometry.
    Soyeurt H; Dardenne P; Dehareng F; Lognay G; Veselko D; Marlier M; Bertozzi C; Mayeres P; Gengler N
    J Dairy Sci; 2006 Sep; 89(9):3690-5. PubMed ID: 16899705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vibrational spectroscopic studies of newly developed synthetic biopolymers.
    Bista RK; Bruch RF; Covington AM
    Biopolymers; 2010 May; 93(5):403-17. PubMed ID: 20091671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Major advances in testing of dairy products: milk component and dairy product attribute testing.
    Barbano DM; Lynch JM
    J Dairy Sci; 2006 Apr; 89(4):1189-94. PubMed ID: 16537952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Optimizing spectral region in using near-infrared spectroscopy for donkey milk analysis].
    Zheng LM; Zhang LD; Guo HY; Pang K; Zhang WJ; Ren FZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Nov; 27(11):2224-7. PubMed ID: 18260400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows.
    Dehareng F; Delfosse C; Froidmont E; Soyeurt H; Martin C; Gengler N; Vanlierde A; Dardenne P
    Animal; 2012 Oct; 6(10):1694-701. PubMed ID: 23031566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vibrational spectroscopy and the development of new force fields for biological molecules.
    Gerber RB; Chaban GM; Gregurick SK; Brauer B
    Biopolymers; 2003 Mar; 68(3):370-82. PubMed ID: 12601796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards combinatorial spectroscopy: the case of minor milk fatty acids determination.
    Stefanov I; Baeten V; De Baets B; Fievez V
    Talanta; 2013 Aug; 112():101-10. PubMed ID: 23708544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Qualitative and quantitative analysis of proteins and peptides in milk products by capillary electrophoresis.
    Strickland M; Johnson ME; Broadbent JR
    Electrophoresis; 2001 May; 22(8):1510-7. PubMed ID: 11386663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopic and structural elucidation of amino acid derivatives and small peptides: experimental and theoretical tools.
    Kolev T; Spiteller M; Koleva B
    Amino Acids; 2010 Jan; 38(1):45-50. PubMed ID: 19083080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of the number of observations used for Fourier transform infrared model calibration for bovine milk fat composition on the estimated genetic parameters of the predicted data.
    Rutten MJ; Bovenhuis H; van Arendonk JA
    J Dairy Sci; 2010 Oct; 93(10):4872-82. PubMed ID: 20855022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative analysis of diphenhydramine hydrochloride in pharmaceutical wafers using near infrared and Raman spectroscopy.
    Haag M; Brüning M; Molt K
    Anal Bioanal Chem; 2009 Nov; 395(6):1777-85. PubMed ID: 19802605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-dimensional infrared spectroscopy of metal carbonyls.
    Baiz CR; McRobbie PL; Anna JM; Geva E; Kubarych KJ
    Acc Chem Res; 2009 Sep; 42(9):1395-404. PubMed ID: 19453102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.