These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26593585)

  • 1. Green direct determination of mineral elements in artichokes by infrared spectroscopy and X-ray fluorescence.
    Mir-Marqués A; Martínez-García M; Garrigues S; Cervera ML; de la Guardia M
    Food Chem; 2016 Apr; 196():1023-30. PubMed ID: 26593585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial least squares modelization of energy dispersive X-ray fluorescence.
    Herreros-Chavez L; Morales-Rubio A; Cervera ML; de la Guardia M
    Talanta; 2019 Mar; 194():158-163. PubMed ID: 30609516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Influence of optical path length on NIR analysis results for trace metal determination in Chinese rice wine].
    Yu HY; Ying YB; Xie LJ; Fu XP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jun; 27(6):1118-20. PubMed ID: 17763771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a methodology for calcium, iron, potassium, magnesium, manganese, and zinc quantification in teas using X-ray spectroscopy and multivariate calibration.
    Pereira FM; Pereira-Filho ER; Bueno MI
    J Agric Food Chem; 2006 Aug; 54(16):5723-30. PubMed ID: 16881669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineral profile of kaki fruits (Diospyros kaki L.).
    Mir-Marqués A; Domingo A; Cervera ML; de la Guardia M
    Food Chem; 2015 Apr; 172():291-7. PubMed ID: 25442556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct determination by portable ED-XRF of mineral profile in cocoa powder samples.
    Herreros-Chavez L; Cervera ML; Morales-Rubio A
    Food Chem; 2019 Apr; 278():373-379. PubMed ID: 30583386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler.
    Harper M; Pacolay B; Hintz P; Andrew ME
    J Environ Monit; 2006 Mar; 8(3):384-92. PubMed ID: 16528423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ED-XRF as a tool for rapid minerals control in milk-based products.
    Perring L; Andrey D
    J Agric Food Chem; 2003 Jul; 51(15):4207-12. PubMed ID: 12848486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring near and midinfrared spectroscopy to predict trace iron and zinc contents in powdered milk.
    Wu D; He Y; Shi J; Feng S
    J Agric Food Chem; 2009 Mar; 57(5):1697-704. PubMed ID: 19215130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the Mineral Composition and Toxic Element Contents of Propolis by Near Infrared Spectroscopy.
    González-Martín MI; Escuredo O; Revilla I; Vivar-Quintana AM; Coello MC; Riocerezo CP; Moncada GW
    Sensors (Basel); 2015 Nov; 15(11):27854-68. PubMed ID: 26540058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of mineral composition of Brazilian bee pollen by near infrared spectroscopy and PLS regression.
    Costa MCA; Morgano MA; Ferreira MMC; Milani RF
    Food Chem; 2019 Feb; 273():85-90. PubMed ID: 30292379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of X-ray fluorescence spectroscopy as a method for the rapid and direct determination of sodium in cheese.
    Stankey JA; Akbulut C; Romero JE; Govindasamy-Lucey S
    J Dairy Sci; 2015 Aug; 98(8):5040-51. PubMed ID: 26051319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of elements in wine using near infrared spectroscopy and partial least squares regression.
    Cozzolino D; Kwiatkowski MJ; Dambergs RG; Cynkar WU; Janik LJ; Skouroumounis G; Gishen M
    Talanta; 2008 Jan; 74(4):711-6. PubMed ID: 18371698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fast determination of mineral elements in wheat flour by near-infrared spectroscopy].
    Gao H; Wang G; Wang Z
    Wei Sheng Yan Jiu; 2021 May; 50(3):495-500. PubMed ID: 34074375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry.
    Kaniu MI; Angeyo KH; Mwala AK; Mangala MJ
    Anal Chim Acta; 2012 Jun; 729():21-5. PubMed ID: 22595429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination and evaluation of the mineral composition of Obi (Cola acuminate).
    Martins VS; de Jesus RM; da Silva EG; Fragoso WD; Ferreira SL
    Biol Trace Elem Res; 2011 Oct; 143(1):478-88. PubMed ID: 20838923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and direct Na and K determination in table, marine, and low-sodium salts by X-ray fluorescence and chemometrics.
    Da-Col JA; Bueno MI; Melquiades FL
    J Agric Food Chem; 2015 Mar; 63(9):2406-12. PubMed ID: 25710102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short communication: Variations in major mineral contents of Mediterranean buffalo milk and application of Fourier-transform infrared spectroscopy for their prediction.
    Stocco G; Cipolat-Gotet C; Bonfatti V; Schiavon S; Bittante G; Cecchinato A
    J Dairy Sci; 2016 Nov; 99(11):8680-8686. PubMed ID: 27614834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared and atomic spectrometry analysis of the mineral composition of a series of equine sabulous material samples and urinary calculi.
    Diaz-Espiñeira M; Escolar E; Bellanato J; De La Fuente MA
    Res Vet Sci; 1997; 63(1):93-5. PubMed ID: 9368965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of X-ray fluorescence capabilities for nail and hair matrices through zinc measurement in keratin reference materials.
    Fleming DEB; Kaiser MG; Rankin BD; Schenkels KMM
    J Trace Elem Med Biol; 2023 May; 77():127136. PubMed ID: 36716562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.