BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 26593630)

  • 21. A comparison of cartilage stress-relaxation models in unconfined compression: QLV and stretched exponential in combination with fluid flow.
    June RK; Fyhrie DP
    Comput Methods Biomech Biomed Engin; 2013; 16(5):565-76. PubMed ID: 22149471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical study of temperature effects on the poro-viscoelastic behavior of articular cartilage.
    Behrou R; Foroughi H; Haghpanah F
    J Mech Behav Biomed Mater; 2018 Feb; 78():214-223. PubMed ID: 29174620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydration dependent biomechanical properties of the corneal stroma.
    Hatami-Marbini H; Etebu E
    Exp Eye Res; 2013 Nov; 116():47-54. PubMed ID: 23891861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Poroelastic numerical modelling of natural and engineered cartilage based on in vitro tests.
    Boschetti F; Gervaso F; Pennati G; Peretti GM; Vena P; Dubini G
    Biorheology; 2006; 43(3,4):235-47. PubMed ID: 16912397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Blood clot behaves as a poro-visco-elastic material.
    Ghezelbash F; Liu S; Shirazi-Adl A; Li J
    J Mech Behav Biomed Mater; 2022 Apr; 128():105101. PubMed ID: 35124354
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale.
    Su L; Wang M; Yin J; Ti F; Yang J; Ma C; Liu S; Lu TJ
    Acta Biomater; 2023 Jan; 155():423-435. PubMed ID: 36372152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.
    Han SK; Federico S; Grillo A; Giaquinta G; Herzog W
    Biomech Model Mechanobiol; 2007 Apr; 6(3):139-50. PubMed ID: 16506020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical conversion of transient to harmonic response functions for linear viscoelastic materials.
    Buschmann MD
    J Biomech; 1997 Feb; 30(2):197-202. PubMed ID: 9001942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stress relaxation behavior of tessellated cartilage from the jaws of blue sharks.
    Liu X; Dean MN; Youssefpour H; Summers AP; Earthman JC
    J Mech Behav Biomed Mater; 2014 Jan; 29():68-80. PubMed ID: 24055795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of friction properties of hydrogels based on a biphasic cartilage model.
    Baykal D; Underwood RJ; Mansmann K; Marcolongo M; Kurtz SM
    J Mech Behav Biomed Mater; 2013 Dec; 28():263-73. PubMed ID: 24008138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the accuracy and fitting of transversely isotropic material models.
    Feng Y; Okamoto RJ; Genin GM; Bayly PV
    J Mech Behav Biomed Mater; 2016 Aug; 61():554-566. PubMed ID: 27136091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.
    Demirci N; Tönük E
    Acta Bioeng Biomech; 2014; 16(4):13-21. PubMed ID: 25597890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Singular perturbation analysis of the nonlinear, flow-dependent compressive stress relaxation behavior of articular cartilage.
    Holmes MH; Lai WM; Mow VC
    J Biomech Eng; 1985 Aug; 107(3):206-18. PubMed ID: 4046561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A linear viscoelastic biphasic model for soft tissues based on the Theory of Porous Media.
    Ehlers W; Markert B
    J Biomech Eng; 2001 Oct; 123(5):418-24. PubMed ID: 11601726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stress-relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure.
    Julkunen P; Wilson W; Jurvelin JS; Rieppo J; Qu CJ; Lammi MJ; Korhonen RK
    J Biomech; 2008; 41(9):1978-86. PubMed ID: 18490021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure.
    Donzelli PS; Spilker RL; Ateshian GA; Mow VC
    J Biomech; 1999 Oct; 32(10):1037-47. PubMed ID: 10476842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonlinear and viscoelastic characteristics of skin under compression: experiment and analysis.
    Wu JZ; Dong RG; Smutz WP; Schopper AW
    Biomed Mater Eng; 2003; 13(4):373-85. PubMed ID: 14646052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite element formulation of biphasic poroviscoelastic model for articular cartilage.
    Suh JK; Bai S
    J Biomech Eng; 1998 Apr; 120(2):195-201. PubMed ID: 10412380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model.
    Fortin M; Soulhat J; Shirazi-Adl A; Hunziker EB; Buschmann MD
    J Biomech Eng; 2000 Apr; 122(2):189-95. PubMed ID: 10834160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.