BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 26593630)

  • 41. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling.
    Chui C; Kobayashi E; Chen X; Hisada T; Sakuma I
    Med Biol Eng Comput; 2007 Jan; 45(1):99-106. PubMed ID: 17160416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data.
    García JJ; Cortés DH
    J Biomech; 2007; 40(8):1737-44. PubMed ID: 17014853
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of hyperelastic models for the non-linear and non-uniform high strain-rate mechanics of tibial cartilage.
    Deneweth JM; McLean SG; Arruda EM
    J Biomech; 2013 Jun; 46(10):1604-10. PubMed ID: 23669276
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Viscoelastic shear properties of the corneal stroma.
    Hatami-Marbini H
    J Biomech; 2014 Feb; 47(3):723-8. PubMed ID: 24368145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A constituent-based model for the nonlinear viscoelastic behavior of ligaments.
    Vena P; Gastaldi D; Contro R
    J Biomech Eng; 2006 Jun; 128(3):449-57. PubMed ID: 16706595
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load.
    Garcia JJ; Altiero NJ; Haut RC
    J Biomech Eng; 1998 Oct; 120(5):608-13. PubMed ID: 10412438
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study.
    Julkunen P; Korhonen RK; Herzog W; Jurvelin JS
    Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unconfined compression of white matter.
    Cheng S; Bilston LE
    J Biomech; 2007; 40(1):117-24. PubMed ID: 16376349
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage.
    Federico S; Grillo A; La Rosa G; Giaquinta G; Herzog W
    J Biomech; 2005 Oct; 38(10):2008-18. PubMed ID: 16084201
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A constitutive model for the periodontal ligament as a compressible transversely isotropic visco-hyperelastic tissue.
    Zhurov AI; Limbert G; Aeschlimann DP; Middleton J
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):223-35. PubMed ID: 17558650
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of tension-compression nonlinearity on solute transport in charged hydrated fibrous tissues under dynamic unconfined compression.
    Huang CY; Gu WY
    J Biomech Eng; 2007 Jun; 129(3):423-9. PubMed ID: 17536910
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A fibril-network-reinforced biphasic model of cartilage in unconfined compression.
    Soulhat J; Buschmann MD; Shirazi-Adl A
    J Biomech Eng; 1999 Jun; 121(3):340-7. PubMed ID: 10396701
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Corneal hyper-viscoelastic model: derivations, experiments, and simulations.
    Su P; Yang Y; Xiao J; Song Y
    Acta Bioeng Biomech; 2015; 17(2):73-84. PubMed ID: 26399307
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration.
    Lee SY; Pereira BP; Yusof N; Selvaratnam L; Yu Z; Abbas AA; Kamarul T
    Acta Biomater; 2009 Jul; 5(6):1919-25. PubMed ID: 19289306
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Viscoelastic properties of shock wave exposed brain tissue subjected to unconfined compression experiments.
    McCarty AK; Zhang L; Hansen S; Jackson WJ; Bentil SA
    J Mech Behav Biomed Mater; 2019 Dec; 100():103380. PubMed ID: 31446342
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The influence of fiber orientation on the equilibrium properties of neutral and charged biphasic tissues.
    Nagel T; Kelly DJ
    J Biomech Eng; 2010 Nov; 132(11):114506. PubMed ID: 21034158
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transversely isotropic elasticity imaging of cancellous bone.
    Shore SW; Barbone PE; Oberai AA; Morgan EF
    J Biomech Eng; 2011 Jun; 133(6):061002. PubMed ID: 21744922
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Elasticity imaging of polymeric media.
    Sridhar M; Liu J; Insana MF
    J Biomech Eng; 2007 Apr; 129(2):259-72. PubMed ID: 17408331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.