BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26593660)

  • 1. Reducing and Reversing the Diphosphene-Diphosphinylidene Energy Separation.
    Vogt-Geisse S; Schaefer HF
    J Chem Theory Comput; 2012 May; 8(5):1663-70. PubMed ID: 26593660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diphosphene and diphosphinylidene.
    Lu T; Simmonett AC; Evangelista FA; Yamaguchi Y; Schaefer HF
    J Phys Chem A; 2009 Nov; 113(47):13227-36. PubMed ID: 19594123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-lying triplet states of diphosphene and diphosphinylidene.
    Lu T; Hao Q; Simmonett AC; Evangelista FA; Yamaguchi Y; Fang DC; Schaefer HF
    J Phys Chem A; 2010 Oct; 114(40):10850-6. PubMed ID: 20836526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heats of formation of diphosphene, phosphinophosphinidene, diphosphine, and their methyl derivatives, and mechanism of the borane-assisted hydrogen release.
    Matus MH; Nguyen MT; Dixon DA
    J Phys Chem A; 2007 Mar; 111(9):1726-36. PubMed ID: 17298044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular silanol chemistry in the gas phase. Topological (AIM) and population (NBO) analyses of hydrogen-bonded complexes between H3SiOH and selected O- and N-acceptor molecules.
    Beckmann J; Grabowsky S
    J Phys Chem A; 2007 Mar; 111(10):2011-9. PubMed ID: 17305322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio calculation of inner-sphere reorganization energies of arenediazonium ion couples.
    Weaver MN; Janicki SZ; Petillo PA
    J Org Chem; 2001 Feb; 66(4):1138-45. PubMed ID: 11312940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing complexes with pnicogen bonds involving sp2 hybridized phosphorus atoms: (H2C═PX)2 with X = F, Cl, OH, CN, NC, CCH, H, CH3, and BH2.
    Del Bene JE; Alkorta I; Elguero J
    J Phys Chem A; 2013 Aug; 117(31):6893-903. PubMed ID: 23899399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halogen-hydride interaction between Z-X (Z = CN, NC; X = F, Cl, Br) and H-Mg-Y (Y = H, F, Cl, Br, CH3).
    Mohajeri A; Alipour M; Mousaee M
    J Phys Chem A; 2011 May; 115(17):4457-66. PubMed ID: 21456584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substituent effects on the cooperativity of halogen bonding.
    Solimannejad M; Malekani M; Alkorta I
    J Phys Chem A; 2013 Jul; 117(26):5551-7. PubMed ID: 23795804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model identity SN2 reactions CH3X + X- (X = F, Cl, CN, OH, SH, NH2, PH2): Marcus theory analyzed.
    Gonzales JM; Allen WD; Schaefer HF
    J Phys Chem A; 2005 Nov; 109(46):10613-28. PubMed ID: 16834318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Carbenes via Hydrogenation Energies, Stability, and Reactivity: What's in a Name?
    Vasiliu M; Peterson KA; Arduengo AJ; Dixon DA
    Chemistry; 2017 Dec; 23(69):17556-17565. PubMed ID: 28949420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand bond energies in cis- and trans-[L-Pd(PH3)2Cl]+ complexes from coupled cluster theory (CCSD(T)) and density functional theory.
    Chen M; Craciun R; Hoffman N; Dixon DA
    Inorg Chem; 2012 Dec; 51(24):13195-203. PubMed ID: 23194426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pnicogen-bonded cyclic trimers (PH2X)3 with X = F, Cl, OH, NC, CN, CH3, H, and BH2.
    Alkorta I; Elguero J; Del Bene JE
    J Phys Chem A; 2013 Jun; 117(23):4981-7. PubMed ID: 23731352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational study of An-X bonding (An = Th, U; X = p-block-based ligands) in pyrrolic macrocycle-supported complexes from the quantum theory of atoms in molecules and bond energy decomposition analysis.
    O'Brien KT; Kaltsoyannis N
    Dalton Trans; 2017 Jan; 46(3):760-769. PubMed ID: 27991620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of mixed substituents on the macrocyclic ring distortions of free base porphyrins and their metal complexes.
    Bhyrappa P; Arunkumar C; Varghese B
    Inorg Chem; 2009 May; 48(9):3954-65. PubMed ID: 19334709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Definitive ab initio studies of model SN2 reactions CH(3)X+F- (X=F, Cl, CN, OH, SH, NH(2), PH(2)).
    Gonzales JM; Pak C; Cox RS; Allen WD; Schaefer III HF; Császár AG; Tarczay G
    Chemistry; 2003 May; 9(10):2173-92. PubMed ID: 12772292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accounting for the differences in the structures and relative energies of the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I4 2+, the Se-I pi-bonded Se2I4 2+, and their higher-energy isomers by AIM, MO, NBO, and VB methodologies.
    Brownridge S; Crawford MJ; Du H; Harcourt RD; Knapp C; Laitinen RS; Passmore J; Rautiainen JM; Suontamo RJ; Valkonen J
    Inorg Chem; 2007 Feb; 46(3):681-99. PubMed ID: 17257010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remote substituent effects on N-X (X = H, F, Cl, CH3, Li) bond dissociation energies in para-substituted anilines.
    Song KS; Liu L; Guo QX
    J Org Chem; 2003 Jan; 68(2):262-6. PubMed ID: 12530847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct estimate of the strength of conjugation and hyperconjugation by the energy decomposition analysis method.
    Fernández I; Frenking G
    Chemistry; 2006 Apr; 12(13):3617-29. PubMed ID: 16502455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic Identification of Diphosphene HPPH and Isomeric Diphosphinyldene PPH
    Lu B; Wang L; Jiang X; Rauhut G; Zeng X
    Angew Chem Int Ed Engl; 2023 Mar; 62(10):e202217353. PubMed ID: 36637338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.