BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26593892)

  • 1. Relationship between Structure and Conformational Change of the Vitamin D Receptor Ligand Binding Domain in 1α,25-Dihydroxyvitamin D3 Signaling.
    Wan LY; Zhang YQ; Chen MD; Du YQ; Liu CB; Wu JF
    Molecules; 2015 Nov; 20(11):20473-86. PubMed ID: 26593892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular modeling, affinity labeling, and site-directed mutagenesis define the key points of interaction between the ligand-binding domain of the vitamin D nuclear receptor and 1 alpha,25-dihydroxyvitamin D3.
    Swamy N; Xu W; Paz N; Hsieh JC; Haussler MR; Maalouf GJ; Mohr SC; Ray R
    Biochemistry; 2000 Oct; 39(40):12162-71. PubMed ID: 11015194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of vitamin D analogs modulating the pocket structure of vitamin D receptor.
    Yamamoto K; Anami Y; Itoh T
    Curr Top Med Chem; 2014; 14(21):2378-87. PubMed ID: 25537068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide.
    Vanhooke JL; Benning MM; Bauer CB; Pike JW; DeLuca HF
    Biochemistry; 2004 Apr; 43(14):4101-10. PubMed ID: 15065852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-specific structural changes in the vitamin D receptor in solution.
    Singarapu KK; Zhu J; Tonelli M; Rao H; Assadi-Porter FM; Westler WM; DeLuca HF; Markley JL
    Biochemistry; 2011 Dec; 50(51):11025-33. PubMed ID: 22112050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function analysis of vitamin D and VDR model.
    Yamada S; Yamamoto K; Masuno H
    Curr Pharm Des; 2000 May; 6(7):733-48. PubMed ID: 10828304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal Structure of the Vitamin D Receptor Ligand-Binding Domain with Lithocholic Acids.
    Ikura T; Ito N
    Vitam Horm; 2016; 100():117-36. PubMed ID: 26827950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function relationships of vitamin D including ligand recognition by the vitamin D receptor.
    Yamada S; Shimizu M; Yamamoto K
    Med Res Rev; 2003 Jan; 23(1):89-115. PubMed ID: 12424754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structural basis for the species-specific antagonism of 26,23-lactones on vitamin D signaling.
    Peräkylä M; Molnár F; Carlberg C
    Chem Biol; 2004 Aug; 11(8):1147-56. PubMed ID: 15324816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional modeling of and ligand docking to vitamin D receptor ligand binding domain.
    Yamamoto K; Masuno H; Choi M; Nakashima K; Taga T; Ooizumi H; Umesono K; Sicinska W; VanHooke J; DeLuca HF; Yamada S
    Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1467-72. PubMed ID: 10677485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural evaluation of the agonistic action of a vitamin D analog with two side chains binding to the nuclear vitamin D receptor.
    Väisänen S; Peräkylä M; Kärkkäinen JI; Uskokovic MR; Carlberg C
    Mol Pharmacol; 2003 Jun; 63(6):1230-7. PubMed ID: 12761332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function analysis of the Rev-erbA and RVR ligand-binding domains reveals a large hydrophobic surface that mediates corepressor binding and a ligand cavity occupied by side chains.
    Renaud JP; Harris JM; Downes M; Burke LJ; Muscat GE
    Mol Endocrinol; 2000 May; 14(5):700-17. PubMed ID: 10809233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional model of the ligand binding domain of the nuclear receptor for 1alpha,25-dihydroxy-vitamin D(3).
    Norman AW; Adams D; Collins ED; Okamura WH; Fletterick RJ
    J Cell Biochem; 1999 Sep; 74(3):323-33. PubMed ID: 10412035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antagonist- and inverse agonist-driven interactions of the vitamin D receptor and the constitutive androstane receptor with corepressor protein.
    Lempiäinen H; Molnár F; Macias Gonzalez M; Peräkylä M; Carlberg C
    Mol Endocrinol; 2005 Sep; 19(9):2258-72. PubMed ID: 15905360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-mediated conformational changes of the VDR are required for gene transactivation.
    Carlberg C
    J Steroid Biochem Mol Biol; 2004 May; 89-90(1-5):227-32. PubMed ID: 15225776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why do we need a three-dimensional architecture of the ligand-binding domain of the nuclear 1alpha,25-dihydroxyvitamin D(3) receptor?
    Mohr SC; Swamy N; Xu W; Ray R
    Steroids; 2001; 66(3-5):189-201. PubMed ID: 11179726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of the Vitamin D sterol-Vitamin D receptor (VDR) conformational ensemble model.
    Mizwicki MT; Bishop JE; Norman AW
    Steroids; 2005; 70(5-7):464-71. PubMed ID: 15862832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations.
    Peräkylä M
    Eur Biophys J; 2009 Feb; 38(2):185-98. PubMed ID: 18836710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent labeling of nuclear vitamin D receptor with affinity labeling reagents containing a cross-linking probe at three different positions of the parent ligand: structural and biochemical implications.
    Kaya T; Swamy N; Persons KS; Ray S; Mohr SC; Ray R
    Bioorg Chem; 2009 Apr; 37(2):57-63. PubMed ID: 19223058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A perspective on how the Vitamin D sterol/Vitamin D receptor (VDR) conformational ensemble model can potentially be used to understand the structure-function results of A-ring modified Vitamin D sterols.
    Mizwicki MT; Bula CM; Bishop JE; Norman AW
    J Steroid Biochem Mol Biol; 2005 Oct; 97(1-2):69-82. PubMed ID: 16055325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.