These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 26593894)

  • 1. Redox Species of Redox Flow Batteries: A Review.
    Pan F; Wang Q
    Molecules; 2015 Nov; 20(11):20499-517. PubMed ID: 26593894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction between Lithium Anode and Polysulfide Ions in a Lithium-Sulfur Battery.
    Zheng D; Yang XQ; Qu D
    ChemSusChem; 2016 Sep; 9(17):2348-50. PubMed ID: 27535337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Battery technologies for large-scale stationary energy storage.
    Soloveichik GL
    Annu Rev Chem Biomol Eng; 2011; 2():503-27. PubMed ID: 22432629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution.
    Lee DJ; Agostini M; Park JW; Sun YK; Hassoun J; Scrosati B
    ChemSusChem; 2013 Dec; 6(12):2245-8. PubMed ID: 23943264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell Concepts of Metal-Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications.
    Medenbach L; Adelhelm P
    Top Curr Chem (Cham); 2017 Sep; 375(5):81. PubMed ID: 28963656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.
    Duan W; Vemuri RS; Hu D; Yang Z; Wei X
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells.
    Chung SH; Manthiram A
    ChemSusChem; 2014 Jun; 7(6):1655-61. PubMed ID: 24700745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(exTTF): a novel redox-active polymer as active material for li-organic batteries.
    Häupler B; Burges R; Friebe C; Janoschka T; Schmidt D; Wild A; Schubert US
    Macromol Rapid Commun; 2014 Aug; 35(15):1367-71. PubMed ID: 24861014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic liquid enabled FeS2 for high-energy-density lithium-ion batteries.
    Evans T; Piper DM; Kim SC; Han SS; Bhat V; Oh KH; Lee SH
    Adv Mater; 2014 Nov; 26(43):7386-92. PubMed ID: 25236752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A metal-free organic-inorganic aqueous flow battery.
    Huskinson B; Marshak MP; Suh C; Er S; Gerhardt MR; Galvin CJ; Chen X; Aspuru-Guzik A; Gordon RG; Aziz MJ
    Nature; 2014 Jan; 505(7482):195-8. PubMed ID: 24402280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life Cycle Assessment of a Vanadium Redox Flow Battery.
    Weber S; Peters JF; Baumann M; Weil M
    Environ Sci Technol; 2018 Sep; 52(18):10864-10873. PubMed ID: 30132664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.
    Jia C; Pan F; Zhu YG; Huang Q; Lu L; Wang Q
    Sci Adv; 2015 Nov; 1(10):e1500886. PubMed ID: 26702440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress in Metal-Organic Frameworks and Their Derived Nanostructures for Energy and Environmental Applications.
    Xie Z; Xu W; Cui X; Wang Y
    ChemSusChem; 2017 Apr; 10(8):1645-1663. PubMed ID: 28150903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separator Decoration with Cobalt/Nitrogen Codoped Carbon for Highly Efficient Polysulfide Confinement in Lithium-Sulfur Batteries.
    Hu W; Hirota Y; Zhu Y; Yoshida N; Miyamoto M; Zheng T; Nishiyama N
    ChemSusChem; 2017 Sep; 10(18):3557-3564. PubMed ID: 28707784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rechargeable quasi-solid state lithium battery with organic crystalline cathode.
    Hanyu Y; Honma I
    Sci Rep; 2012; 2():453. PubMed ID: 22693655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse Vulcanization of Sulfur using Natural Dienes as Sustainable Materials for Lithium-Sulfur Batteries.
    Gomez I; Leonet O; Blazquez JA; Mecerreyes D
    ChemSusChem; 2016 Dec; 9(24):3419-3425. PubMed ID: 27910220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paving the way for using Li₂S batteries.
    Xu R; Zhang X; Yu C; Ren Y; Li JC; Belharouak I
    ChemSusChem; 2014 Sep; 7(9):2457-60. PubMed ID: 25044568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.