These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26594211)

  • 1. Introduction of a Framework for Dynamic Knowledge Representation of the Control Structure of Transplant Immunology: Employing the Power of Abstraction with a Solid Organ Transplant Agent-Based Model.
    An G
    Front Immunol; 2015; 6():561. PubMed ID: 26594211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning.
    An GC; Faeder JR
    Math Biosci; 2009 Jan; 217(1):53-63. PubMed ID: 18835283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Theoretical and Experimental Techniques to Study Murine Heart Transplant Rejection.
    Arciero JC; Maturo A; Arun A; Oh BC; Brandacher G; Raimondi G
    Front Immunol; 2016; 7():448. PubMed ID: 27872621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of TLR4 signaling and tolerance using a qualitative, particle-event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC).
    An G
    Math Biosci; 2009 Jan; 217(1):43-52. PubMed ID: 18950646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agent-based dynamic knowledge representation of Pseudomonas aeruginosa virulence activation in the stressed gut: Towards characterizing host-pathogen interactions in gut-derived sepsis.
    Seal JB; Alverdy JC; Zaborina O; An G
    Theor Biol Med Model; 2011 Sep; 8():33. PubMed ID: 21929759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation.
    An G
    Theor Biol Med Model; 2008 May; 5():11. PubMed ID: 18505587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alloreactivity as therapeutic principle in the treatment of hematologic malignancies. Studies of clinical and immunologic aspects of allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning.
    Petersen SL
    Dan Med Bull; 2007 May; 54(2):112-39. PubMed ID: 17521527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addressing the translational dilemma: dynamic knowledge representation of inflammation using agent-based modeling.
    An G; Christley S
    Crit Rev Biomed Eng; 2012; 40(4):323-40. PubMed ID: 23140123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translational systems biology using an agent-based approach for dynamic knowledge representation: An evolutionary paradigm for biomedical research.
    An GC
    Wound Repair Regen; 2010; 18(1):8-12. PubMed ID: 20082675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In this issue: transplant immunology and transplant biology.
    Jiga LP; Oltean M
    Int Rev Immunol; 2014; 33(3):159-61. PubMed ID: 24833285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic knowledge representation using agent-based modeling: ontology instantiation and verification of conceptual models.
    An G
    Methods Mol Biol; 2009; 500():445-68. PubMed ID: 19399435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The control of anti-donor immune responses by regulatory T cells in organ transplant patients.
    Dijke IE; Weimar W; Baan CC
    Transplant Proc; 2008 Jun; 40(5):1249-52. PubMed ID: 18589082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory T cells as a therapeutic tool to induce solid-organ transplant tolerance: current clinical experiences.
    Nikoueinejad H; Sharif MR; Amirzargar A; Mirshafiey A; Einollahi B
    Exp Clin Transplant; 2013 Oct; 11(5):379-87. PubMed ID: 23902519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hematopoietic stem cell graft manipulation as a mechanism of immunotherapy.
    Talmadge JE
    Int Immunopharmacol; 2003 Aug; 3(8):1121-43. PubMed ID: 12860168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development of immune tolerance in liver transplantation].
    Pons JA; Revilla-Nuin B; Ramírez P; Baroja-Mazo A; Parrilla P
    Gastroenterol Hepatol; 2011 Mar; 34(3):155-69. PubMed ID: 21376423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilizing the Heterogeneity of Clinical Data for Model Refinement and Rule Discovery Through the Application of Genetic Algorithms to Calibrate a High-Dimensional Agent-Based Model of Systemic Inflammation.
    Cockrell C; An G
    Front Physiol; 2021; 12():662845. PubMed ID: 34093225
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of regulatory T cells in the promotion of transplant tolerance.
    Shalev I; Selzner N; Shyu W; Grant D; Levy G
    Liver Transpl; 2012 Jul; 18(7):761-70. PubMed ID: 22523007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Third-Kind Encounters in Biomedicine: Immunology Meets Mathematics and Informatics to Become Quantitative and Predictive.
    Eberhardt M; Lai X; Tomar N; Gupta S; Schmeck B; Steinkasserer A; Schuler G; Vera J
    Methods Mol Biol; 2016; 1386():135-79. PubMed ID: 26677184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplant immunology for non-immunologist.
    Heeger PS; Dinavahi R
    Mt Sinai J Med; 2012; 79(3):376-87. PubMed ID: 22678861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transplant-related immunosuppression: a review of immunosuppression and pulmonary infections.
    Duncan MD; Wilkes DS
    Proc Am Thorac Soc; 2005; 2(5):449-55. PubMed ID: 16322599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.