These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 26594692)
1. Mycorrhizal co-invasion and novel interactions depend on neighborhood context. Moeller HV; Dickie IA; Peltzer DA; Fukami T Ecology; 2015 Sep; 96(9):2336-47. PubMed ID: 26594692 [TBL] [Abstract][Full Text] [Related]
2. Does proximity to mature trees influence ectomycorrhizal fungus communities of Douglas-fir seedlings? Cline ET; Ammirati JF; Edmonds RL New Phytol; 2005 Jun; 166(3):993-1009. PubMed ID: 15869658 [TBL] [Abstract][Full Text] [Related]
3. Ectomycorrhizas and tree seedling establishment are strongly influenced by forest edge proximity but not soil inoculum. Grove S; Saarman NP; Gilbert GS; Faircloth B; Haubensak KA; Parker IM Ecol Appl; 2019 Apr; 29(3):e01867. PubMed ID: 30710404 [TBL] [Abstract][Full Text] [Related]
4. Soil spore bank communities of ectomycorrhizal fungi in endangered Chinese Douglas-fir forests. Wen Z; Shi L; Tang Y; Hong L; Xue J; Xing J; Chen Y; Nara K Mycorrhiza; 2018 Jan; 28(1):49-58. PubMed ID: 28942552 [TBL] [Abstract][Full Text] [Related]
5. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Teste FP; Simard SW; Durall DM; Guy RD; Jones MD; Schoonmaker AL Ecology; 2009 Oct; 90(10):2808-22. PubMed ID: 19886489 [TBL] [Abstract][Full Text] [Related]
6. Host and habitat filtering in seedling root-associated fungal communities: taxonomic and functional diversity are altered in 'novel' soils. Pickles BJ; Gorzelak MA; Green DS; Egger KN; Massicotte HB Mycorrhiza; 2015 Oct; 25(7):517-31. PubMed ID: 25694036 [TBL] [Abstract][Full Text] [Related]
7. Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings. Schoonmaker AL; Teste FP; Simard SW; Guy RD Oecologia; 2007 Dec; 154(3):455-66. PubMed ID: 17885766 [TBL] [Abstract][Full Text] [Related]
8. Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Teste FP; Simard SW Oecologia; 2008 Nov; 158(2):193-203. PubMed ID: 18781333 [TBL] [Abstract][Full Text] [Related]
9. Local adaptation in migrated interior Douglas-fir seedlings is mediated by ectomycorrhizas and other soil factors. Pickles BJ; Twieg BD; O'Neill GA; Mohn WW; Simard SW New Phytol; 2015 Aug; 207(3):858-71. PubMed ID: 25757098 [TBL] [Abstract][Full Text] [Related]
10. Ectomycorrhizal fungi of Douglas-fir retain newly assimilated carbon derived from neighboring European beech. Audisio M; Muhr J; Polle A New Phytol; 2024 Sep; 243(5):1980-1990. PubMed ID: 38952235 [TBL] [Abstract][Full Text] [Related]
11. Effects of growth medium, nutrients, water, and aeration on mycorrhization and biomass allocation of greenhouse-grown interior Douglas-fir seedlings. Kazantseva O; Bingham M; Simard SW; Berch SM Mycorrhiza; 2009 Nov; 20(1):51-66. PubMed ID: 19572155 [TBL] [Abstract][Full Text] [Related]
12. Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings. Plamboeck AH; Dawson TE; Egerton-Warburton LM; North M; Bruns TD; Querejeta JI Mycorrhiza; 2007 Jul; 17(5):439-447. PubMed ID: 17333298 [TBL] [Abstract][Full Text] [Related]
13. Molecular analysis of bacterial communities associated with the roots of Douglas fir (Pseudotsuga menziesii) colonized by different ectomycorrhizal fungi. Burke DJ; Dunham SM; Kretzer AM FEMS Microbiol Ecol; 2008 Aug; 65(2):299-309. PubMed ID: 18459969 [TBL] [Abstract][Full Text] [Related]
14. The potential role of ectomycorrhizal fungi in determining Douglas-fir resistance to defoliation by the western spruce budworm (Lepidoptera: Tortricidae). Palermo BL; Clancy KM; Koch GW J Econ Entomol; 2003 Jun; 96(3):783-91. PubMed ID: 12852617 [TBL] [Abstract][Full Text] [Related]
15. Suilloid fungi as global drivers of pine invasions. Policelli N; Bruns TD; Vilgalys R; Nuñez MA New Phytol; 2019 Apr; 222(2):714-725. PubMed ID: 30586169 [TBL] [Abstract][Full Text] [Related]
16. Soil spore bank communities of ectomycorrhizal fungi in Pseudotsuga japonica forests and neighboring plantations. Okada KH; Matsuda Y Mycorrhiza; 2022 Jan; 32(1):83-93. PubMed ID: 34989868 [TBL] [Abstract][Full Text] [Related]
17. Forest encroachment into a Californian grassland: examining the simultaneous effects of facilitation and competition on tree seedling recruitment. Kennedy PG; Sousa WP Oecologia; 2006 Jun; 148(3):464-74. PubMed ID: 16496180 [TBL] [Abstract][Full Text] [Related]
18. Saprotrophic and ectomycorrhizal fungal sporocarp stoichiometry (C : N : P) across temperate rainforests as evidence of shared nutrient constraints among symbionts. Kranabetter JM; Harman-Denhoed R; Hawkins BJ New Phytol; 2019 Jan; 221(1):482-492. PubMed ID: 30084239 [TBL] [Abstract][Full Text] [Related]
19. Current and potential distribution of the ectomycorrhizal fungus Suillus lakei ((Murrill) A.H. Sm. & Thiers) in its invasion range. Pietras M; Litkowiec M; Gołębiewska J Mycorrhiza; 2018 Aug; 28(5-6):467-475. PubMed ID: 29766279 [TBL] [Abstract][Full Text] [Related]