BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26594693)

  • 1. Latitudinal variation in the response of tidepool copepods to mean and daily range in temperature.
    Hong BC; Shurin JB
    Ecology; 2015 Sep; 96(9):2348-59. PubMed ID: 26594693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential fitness trade-offs for thermal tolerance in the intertidal copepod Tigriopus californicus.
    Willett CS
    Evolution; 2010 Sep; 64(9):2521-34. PubMed ID: 20394668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Latitudinal Clines in Temperature and Salinity Tolerance in Tidepool Copepods.
    Leong W; Sun PY; Edmands S
    J Hered; 2017 Dec; 109(1):71-77. PubMed ID: 28992254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in developmental temperature alters adulthood plasticity of thermal tolerance in
    Healy TM; Bock AK; Burton RS
    J Exp Biol; 2019 Nov; 222(Pt 22):. PubMed ID: 31597734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature variation makes an ectotherm more sensitive to global warming unless thermal evolution occurs.
    Verheyen J; Stoks R
    J Anim Ecol; 2019 Apr; 88(4):624-636. PubMed ID: 30637722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limited potential for adaptation to climate change in a broadly distributed marine crustacean.
    Kelly MW; Sanford E; Grosberg RK
    Proc Biol Sci; 2012 Jan; 279(1727):349-56. PubMed ID: 21653591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of mitochondrial performance at high temperatures is correlated with upper thermal tolerance among populations of an intertidal copepod.
    Healy TM; Burton RS
    Comp Biochem Physiol B Biochem Mol Biol; 2023; 266():110836. PubMed ID: 36801253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation to a latitudinal thermal gradient within a widespread copepod species: the contributions of genetic divergence and phenotypic plasticity.
    Pereira RJ; Sasaki MC; Burton RS
    Proc Biol Sci; 2017 Apr; 284(1853):. PubMed ID: 28446698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis.
    Peterson ML; Doak DF; Morris WF
    Glob Chang Biol; 2018 Apr; 24(4):1614-1625. PubMed ID: 29155464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes.
    Jones NT; Gilbert B
    J Anim Ecol; 2016 Mar; 85(2):559-69. PubMed ID: 26590065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus.
    Schoville SD; Barreto FS; Moy GW; Wolff A; Burton RS
    BMC Evol Biol; 2012 Sep; 12():170. PubMed ID: 22950661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are extreme high temperatures at low or high latitudes more likely to inhibit the population growth of a globally distributed aphid?
    Ma G; Hoffmann AA; Ma CS
    J Therm Biol; 2021 May; 98():102936. PubMed ID: 34016358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of temperature on physiology and reproductive success of a montane leaf beetle: implications for persistence of native populations enduring climate change.
    Dahlhoff EP; Fearnley SL; Bruce DA; Gibbs AG; Stoneking R; McMillan DM; Deiner K; Smiley JT; Rank NE
    Physiol Biochem Zool; 2008; 81(6):718-32. PubMed ID: 18956974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalists and specialists along a latitudinal transect: patterns of thermal adaptation in six species of damselflies.
    Nilsson-Ortman V; Stoks R; De Block M; Johansson F
    Ecology; 2012 Jun; 93(6):1340-52. PubMed ID: 22834375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Latitudinal and temperature-dependent variation in embryonic development and growth in Rana temporaria.
    Laugen AT; Laurila A; Merilä J
    Oecologia; 2003 May; 135(4):548-54. PubMed ID: 16228254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid breakdown weakens under thermal stress in population crosses of the copepod Tigriopus californicus.
    Willett CS
    J Hered; 2012; 103(1):103-14. PubMed ID: 22016434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tolerance Patterns and Transcriptomic Response to Extreme and Fluctuating Salinities across Populations of the Intertidal Copepod
    Lee J; Phillips MC; Lobo M; Willett CS
    Physiol Biochem Zool; 2021; 94(1):50-69. PubMed ID: 33306461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geographic variation in the response of Culex pipiens life history traits to temperature.
    Ruybal JE; Kramer LD; Kilpatrick AM
    Parasit Vectors; 2016 Feb; 9():116. PubMed ID: 26928181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic plasticity is not a cline: Thermal physiology of an intertidal barnacle over 20° of latitude.
    Broitman BR; Lagos NA; Opitz T; Figueroa D; Maldonado K; Ricote N; Lardies MA
    J Anim Ecol; 2021 Aug; 90(8):1961-1972. PubMed ID: 33942301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trade-offs, geography, and limits to thermal adaptation in a tide pool copepod.
    Kelly MW; Grosberg RK; Sanford E
    Am Nat; 2013 Jun; 181(6):846-54. PubMed ID: 23669546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.