These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26595165)

  • 1. Historical changes in flowering phenology are governed by temperature × precipitation interactions in a widespread perennial herb in western North America.
    Matthews ER; Mazer SJ
    New Phytol; 2016 Apr; 210(1):157-67. PubMed ID: 26595165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substantial shifts in flowering phenology of Sternbergia vernalis in the Himalaya: Supplementing decadal field records with historical and experimental evidences.
    Hassan T; Hamid M; Wani SA; Malik AH; Waza SA; Khuroo AA
    Sci Total Environ; 2021 Nov; 795():148811. PubMed ID: 34246140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overlooked climate parameters best predict flowering onset: Assessing phenological models using the elastic net.
    Park IW; Mazer SJ
    Glob Chang Biol; 2018 Dec; 24(12):5972-5984. PubMed ID: 30218548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spring- and fall-flowering species show diverging phenological responses to climate in the Southeast USA.
    Pearson KD
    Int J Biometeorol; 2019 Apr; 63(4):481-492. PubMed ID: 30734127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Herbarium records indicate variation in bloom-time sensitivity to temperature across a geographically diverse region.
    Kopp CW; Neto-Bradley BM; Lipsen LPJ; Sandhar J; Smith S
    Int J Biometeorol; 2020 May; 64(5):873-880. PubMed ID: 32112132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate drives phenological reassembly of a mountain wildflower meadow community.
    Theobald EJ; Breckheimer I; HilleRisLambers J
    Ecology; 2017 Nov; 98(11):2799-2812. PubMed ID: 29023677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate drives shifts in grass reproductive phenology across the western USA.
    Munson SM; Long AL
    New Phytol; 2017 Mar; 213(4):1945-1955. PubMed ID: 27870060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of herbarium and citizen science phenology datasets for detecting response of flowering time to climate change in Denmark.
    Iwanycki Ahlstrand N; Primack RB; Tøttrup AP
    Int J Biometeorol; 2022 May; 66(5):849-862. PubMed ID: 35235036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species' phenological cueing mechanisms.
    Davis CC; Willis CG; Connolly B; Kelly C; Ellison AM
    Am J Bot; 2015 Oct; 102(10):1599-609. PubMed ID: 26451038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Herbarium specimens reveal the footprint of climate change on flowering trends across north-central North America.
    Calinger KM; Queenborough S; Curtis PS
    Ecol Lett; 2013 Aug; 16(8):1037-44. PubMed ID: 23786499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenological patterns of flowering across biogeographical regions of Europe.
    Templ B; Templ M; Filzmoser P; Lehoczky A; Bakšienè E; Fleck S; Gregow H; Hodzic S; Kalvane G; Kubin E; Palm V; Romanovskaja D; Vucˇetic V; Žust A; Czúcz B;
    Int J Biometeorol; 2017 Jul; 61(7):1347-1358. PubMed ID: 28220255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extirpated prairie species demonstrate more variable phenological responses to warming than extant congeners.
    Zettlemoyer MA; Renaldi K; Muzyka MD; Lau JA
    Am J Bot; 2021 Jun; 108(6):958-970. PubMed ID: 34133754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shifts in flowering phenology in response to spring temperatures in eastern Tennessee.
    Faidiga AS; Oliver MG; Budke JM; Kalisz S
    Am J Bot; 2023 Aug; 110(8):e16203. PubMed ID: 37327370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperate flowering phenology.
    Tooke F; Battey NH
    J Exp Bot; 2010 Jun; 61(11):2853-62. PubMed ID: 20576790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond the usual climate? Factors determining flowering and fruiting phenology across a genus over 117 years.
    Bartlett KB; Austin MW; Beck JB; Zanne AE; Smith AB
    Am J Bot; 2023 Jul; 110(7):e16188. PubMed ID: 37200535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A decade of flowering phenology of the keystone saguaro cactus (Carnegiea gigantea).
    Renzi JJ; Peachey WD; Gerst KL
    Am J Bot; 2019 Feb; 106(2):199-210. PubMed ID: 30791093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shifts in the flowering phenology of the northern Great Plains: patterns over 100 years.
    Dunnell KL; Travers SE
    Am J Bot; 2011 Jun; 98(6):935-45. PubMed ID: 21613073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changing Climate Drives Divergent and Nonlinear Shifts in Flowering Phenology across Elevations.
    Rafferty NE; Diez JM; Bertelsen CD
    Curr Biol; 2020 Feb; 30(3):432-441.e3. PubMed ID: 31902725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.