These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26595261)

  • 1. A New Method for Navigating Optimal Direction for Pulling Ligand from Binding Pocket: Application to Ranking Binding Affinity by Steered Molecular Dynamics.
    Vuong QV; Nguyen TT; Li MS
    J Chem Inf Model; 2015 Dec; 55(12):2731-8. PubMed ID: 26595261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Self-Adaptive Steered Molecular Dynamics Method Based on Minimization of Stretching Force Reveals the Binding Affinity of Protein-Ligand Complexes.
    Gu J; Li H; Wang X
    Molecules; 2015 Oct; 20(10):19236-51. PubMed ID: 26506335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the Binding Affinity by Jarzynski's Nonequilibrium Binding Free Energy and Rupture Time.
    Truong DT; Li MS
    J Phys Chem B; 2018 May; 122(17):4693-4699. PubMed ID: 29630379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of Multidirectional Pathways for Ligand Release from the Receptor: A New Approach Based on Differential Evolution.
    Nguyen HL; Thai NQ; Li MS
    J Chem Theory Comput; 2022 Jun; 18(6):3860-3872. PubMed ID: 35512104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of protein-ligand affinity prediction using steered molecular dynamics simulations.
    Okimoto N; Suenaga A; Taiji M
    J Biomol Struct Dyn; 2017 Nov; 35(15):3221-3231. PubMed ID: 27771988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Steered Molecular Dynamics Approach to Computing Absolute Binding Free Energy of Ligand-Protein Complexes: A Brute Force Approach That Is Fast and Accurate.
    Chen LY
    J Chem Theory Comput; 2015 Apr; 11(4):1928-38. PubMed ID: 25937822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding Mechanism of Thrombin-Ligand Systems Investigated by a Polarized Protein-Specific Charge Force Field and Interaction Entropy Method.
    Zhong S; Huang K; Xiao Z; Sheng X; Li Y; Duan L
    J Phys Chem B; 2019 Oct; 123(41):8704-8716. PubMed ID: 31532675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling the structural determinants for the selectivity of representative factor-Xa and thrombin inhibitors using combined ligand-based and structure-based approaches.
    Bhunia SS; Roy KK; Saxena AK
    J Chem Inf Model; 2011 Aug; 51(8):1966-85. PubMed ID: 21761917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of Work on the Pulling Speed in Mechanical Ligand Unbinding.
    Pham HA; Truong DT; Li MS
    J Phys Chem B; 2021 Aug; 125(30):8325-8330. PubMed ID: 34292743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computing the binding affinity of a ligand buried deep inside a protein with the hybrid steered molecular dynamics.
    Villarreal OD; Yu L; Rodriguez RA; Chen LY
    Biochem Biophys Res Commun; 2017 Jan; 483(1):203-208. PubMed ID: 28034750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the Potential of Mean Force and Nonequilibrium Pulling Simulations by Simultaneous Alchemical Modifications.
    Reif MM; Zacharias M
    J Chem Theory Comput; 2022 Jun; 18(6):3873-3893. PubMed ID: 35653503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Resultant Dipole Moment in Mechanical Dissociation of Biological Complexes.
    Kouza M; Banerji A; Kolinski A; Buhimschi I; Kloczkowski A
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30103417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general and fast scoring function for protein-ligand interactions: a simplified potential approach.
    Muegge I; Martin YC
    J Med Chem; 1999 Mar; 42(5):791-804. PubMed ID: 10072678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. E-novo: an automated workflow for efficient structure-based lead optimization.
    Pearce BC; Langley DR; Kang J; Huang H; Kulkarni A
    J Chem Inf Model; 2009 Jul; 49(7):1797-809. PubMed ID: 19552372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.
    Bryce RA
    Future Med Chem; 2011 Apr; 3(6):683-98. PubMed ID: 21554075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward quantitative estimates of binding affinities for protein-ligand systems involving large inhibitor compounds: a steered molecular dynamics simulation route.
    Nicolini P; Frezzato D; Gellini C; Bizzarri M; Chelli R
    J Comput Chem; 2013 Jul; 34(18):1561-76. PubMed ID: 23620471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Good is Jarzynski's Equality for Computer-Aided Drug Design?
    Ho K; Truong DT; Li MS
    J Phys Chem B; 2020 Jul; 124(26):5338-5349. PubMed ID: 32484689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steered molecular dynamics study of inhibitor binding in the internal binding site in dehaloperoxidase-hemoglobin.
    Zhang Z; Santos AP; Zhou Q; Liang L; Wang Q; Wu T; Franzen S
    Biophys Chem; 2016 Apr; 211():28-38. PubMed ID: 26824426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative binding energy analysis for binding affinity and target selectivity prediction.
    Henrich S; Feierberg I; Wang T; Blomberg N; Wade RC
    Proteins; 2010 Jan; 78(1):135-53. PubMed ID: 19768680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Multiple Binding Modes Using Confined Replica Exchange Molecular Dynamics.
    Anselmi M; Pisabarro MT
    J Chem Theory Comput; 2015 Aug; 11(8):3906-18. PubMed ID: 26574471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.