BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 26595914)

  • 21. Exploiting Flow Dynamics for Superresolution in Contrast-Enhanced Ultrasound.
    Solomon O; van Sloun RJG; Wijkstra H; Mischi M; Eldar YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Oct; 66(10):1573-1586. PubMed ID: 31265391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SUSHI: Sparsity-Based Ultrasound Super-Resolution Hemodynamic Imaging.
    Bar-Zion A; Solomon O; Tremblay-Darveau C; Adam D; Eldar YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2365-2380. PubMed ID: 30295619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feasibility exploration of blood flow estimation by contrast-assisted Nakagami imaging.
    Tsui PH; Yeh CK; Chang CC
    Ultrason Imaging; 2008 Jul; 30(3):133-50. PubMed ID: 19149460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kalman Filter-Based Microbubble Tracking for Robust Super-Resolution Ultrasound Microvessel Imaging.
    Tang S; Song P; Trzasko JD; Lowerison M; Huang C; Gong P; Lok UW; Manduca A; Chen S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Sep; 67(9):1738-1751. PubMed ID: 32248099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-resolution functional vascular assessment with ultrasound.
    Yeh CK; Ferrara KW; Kruse DE
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1263-75. PubMed ID: 15493694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Radial modulation contrast imaging using a 20-MHz single-element intravascular ultrasound catheter.
    Yu FT; Villanueva FS; Chen X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):779-91. PubMed ID: 24803134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High Frame Rate Contrast-Enhanced Ultrasound Imaging for Slow Lymphatic Flow: Influence of Ultrasound Pressure and Flow Rate on Bubble Disruption and Image Persistence.
    Zhu J; Lin S; Leow CH; Rowland EM; Riemer K; Harput S; Weinberg PD; Tang MX
    Ultrasound Med Biol; 2019 Sep; 45(9):2456-2470. PubMed ID: 31279503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micro-ultrasound biofluid imaging and multi-component velocity measurement with micro echo particle image velocimetry technique.
    Qian M; Yan L; Niu L; Jin Q; Ling T; Chen Y; Zheng H
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():451-4. PubMed ID: 19964936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Super-Resolution US Imaging of Rabbit Lymph Node Vasculature in Vivo by Using Microbubbles.
    Zhu J; Rowland EM; Harput S; Riemer K; Leow CH; Clark B; Cox K; Lim A; Christensen-Jeffries K; Zhang G; Brown J; Dunsby C; Eckersley RJ; Weinberg PD; Tang MX
    Radiology; 2019 Jun; 291(3):642-650. PubMed ID: 30990382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A statistical model for the quantification of microbubbles in destructive imaging.
    Siepmann M; Reinhardt M; Schmitz G
    Invest Radiol; 2010 Oct; 45(10):592-9. PubMed ID: 20733506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linear and nonlinear characterization of microbubbles and tissue using the Nakagami statistical model.
    Bahbah N; Novell A; Bouakaz A; Djelouah H
    Ultrasonics; 2017 Apr; 76():200-207. PubMed ID: 28119148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Super-Resolution Imaging Through the Human Skull.
    Soulioti DE; Espindola D; Dayton PA; Pinton GF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jan; 67(1):25-36. PubMed ID: 31494546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A method for differentiating targeted microbubbles in real time using subharmonic micro-ultrasound and interframe filtering.
    Needles A; Couture O; Foster FS
    Ultrasound Med Biol; 2009 Sep; 35(9):1564-73. PubMed ID: 19632763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasound contrast plane wave imaging.
    Couture O; Fink M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2676-83. PubMed ID: 23221216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimating the delivery efficiency of drug-loaded microbubbles in cancer cells with ultrasound and bioluminescence imaging.
    Liao AH; Li YK; Lee WJ; Wu MF; Liu HL; Kuo ML
    Ultrasound Med Biol; 2012 Nov; 38(11):1938-48. PubMed ID: 22929655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compare ultrasound-mediated heating and cavitation between flowing polymer- and lipid-shelled microbubbles during focused ultrasound exposures.
    Zhang S; Zong Y; Wan M; Yu X; Fu Q; Ding T; Zhou F; Wang S
    J Acoust Soc Am; 2012 Jun; 131(6):4845-55. PubMed ID: 22712955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vascular flow and perfusion imaging with ultrasound contrast agents.
    Bruce M; Averkiou M; Tiemann K; Lohmaier S; Powers J; Beach K
    Ultrasound Med Biol; 2004 Jun; 30(6):735-43. PubMed ID: 15219953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poisson Statistical Model of Ultrasound Super-Resolution Imaging Acquisition Time.
    Christensen-Jeffries K; Brown J; Harput S; Zhang G; Zhu J; Tang MX; Dunsby C; Eckersley RJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jul; 66(7):1246-1254. PubMed ID: 31107645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flow quantification with nakagami parametric imaging for suppressing contrast microbubbles attenuation.
    Gu X; Wei M; Zong Y; Jiang H; Wan M
    Ultrasound Med Biol; 2013 Apr; 39(4):660-9. PubMed ID: 23384469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detectability of small blood vessels with high-frequency power Doppler and selection of wall filter cut-off velocity for microvascular imaging.
    Pinter SZ; Lacefield JC
    Ultrasound Med Biol; 2009 Jul; 35(7):1217-28. PubMed ID: 19394752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.