These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 26596111)

  • 1. [Possibilities of submicron objects study in blood of workers].
    Ulanova TS; Zlobina AV; Yakusheva EA; Antip'eva MV; Zabirova MI
    Med Tr Prom Ekol; 2015; (8):18-23. PubMed ID: 26596111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Results obtained in evaluation of parameters characterizing air-borne nanoparticles at a titanium-production facility].
    Ulanova TS; Zlobina AV; Shekurova DA
    Med Tr Prom Ekol; 2013; (11):37-41. PubMed ID: 24640090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.
    Miller A; Drake PL; Hintz P; Habjan M
    Ann Occup Hyg; 2010 Jul; 54(5):504-13. PubMed ID: 20403942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment.
    Fujitani Y; Kobayashi T; Arashidani K; Kunugita N; Suemura K
    J Occup Environ Hyg; 2008 Jun; 5(6):380-9. PubMed ID: 18401789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure to manufactured nanostructured particles in an industrial pilot plant.
    Demou E; Peter P; Hellweg S
    Ann Occup Hyg; 2008 Nov; 52(8):695-706. PubMed ID: 18931382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of airborne nanoparticles present in industry of aluminum surface treatments.
    Santos RJ; Vieira MT
    J Occup Environ Hyg; 2017 Mar; 14(3):D29-D36. PubMed ID: 27801631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Industrial worker exposure to airborne particles during the packing of pigment and nanoscale titanium dioxide.
    Koivisto AJ; Lyyränen J; Auvinen A; Vanhala E; Hämeri K; Tuomi T; Jokiniemi J
    Inhal Toxicol; 2012 Oct; 24(12):839-49. PubMed ID: 23033997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Submicron particle monitoring of paving and related road construction operations.
    Freund A; Zuckerman N; Baum L; Milek D
    J Occup Environ Hyg; 2012; 9(5):298-307. PubMed ID: 22500951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle emission and exposure during nanoparticle synthesis in research laboratories.
    Demou E; Stark WJ; Hellweg S
    Ann Occup Hyg; 2009 Nov; 53(8):829-38. PubMed ID: 19703918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unintended emission of nanoparticle aerosols during common laboratory handling operations.
    Gomez V; Irusta S; Balas F; Navascues N; Santamaria J
    J Hazard Mater; 2014 Aug; 279():75-84. PubMed ID: 25038576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication.
    Shepard MN; Brenner S
    Ann Occup Hyg; 2014 Mar; 58(2):251-65. PubMed ID: 24284882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure assessment of workplaces manufacturing nanosized TiO2 and silver.
    Lee JH; Kwon M; Ji JH; Kang CS; Ahn KH; Han JH; Yu IJ
    Inhal Toxicol; 2011 Mar; 23(4):226-36. PubMed ID: 21456955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speciation of fluoride in workroom air during primary production of aluminium.
    Skaugset NP; Ellingsen DG; Notø H; Jordbekken L; Thomassen Y
    Environ Sci Process Impacts; 2015 Mar; 17(3):578-85. PubMed ID: 25599646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size, composition, morphology, and health implications of airborne incidental metal-containing nanoparticles.
    Gonzalez-Pech NI; Stebounova LV; Ustunol IB; Park JH; Renee Anthony T; Peters TM; Grassian VH
    J Occup Environ Hyg; 2019 Jun; 16(6):387-399. PubMed ID: 30570411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating lung burdens based on individual particle density estimated from scanning electron microscopy and cascade impactor samples.
    Miller FJ; Kaczmar SW; Danzeisen R; Moss OR
    Inhal Toxicol; 2013 Dec; 25(14):813-27. PubMed ID: 24304308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes.
    Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH
    Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafine particles at workplaces of a primary aluminium smelter.
    Thomassen Y; Koch W; Dunkhorst W; Ellingsen DG; Skaugset NP; Jordbekken L; Arne Drabløs P; Weinbruch S
    J Environ Monit; 2006 Jan; 8(1):127-33. PubMed ID: 16395469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Workplace protection factors for an N95 filtering facepiece respirator.
    Janssen LL; Nelson TJ; Cuta KT
    J Occup Environ Hyg; 2007 Sep; 4(9):698-707. PubMed ID: 17654225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-object Release During Machining of Polymer-Based Nanocomposites Depends on Process Factors and the Type of Nanofiller.
    Ding Y; Wohlleben W; Boland M; Vilsmeier K; Riediker M
    Ann Work Expo Health; 2017 Nov; 61(9):1132-1144. PubMed ID: 29136418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle concentrations and composition in a dental office and dental laboratory: A pilot study on the influence of working procedures.
    Lang A; Ovsenik M; Verdenik I; Remškar M; Oblak Č
    J Occup Environ Hyg; 2018 May; 15(5):441-447. PubMed ID: 29370575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.