These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 26596152)

  • 21. Implementation of nuclear gradients of range-separated hybrid density functionals and benchmarking on rotational constants for organic molecules.
    Risthaus T; Steinmetz M; Grimme S
    J Comput Chem; 2014 Jul; 35(20):1509-16. PubMed ID: 24931471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections.
    Lin YS; Li GD; Mao SP; Chai JD
    J Chem Theory Comput; 2013 Jan; 9(1):263-72. PubMed ID: 26589028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Benchmark Database for Ylidic Bond Dissociation Energies and Its Use for Assessments of Electronic Structure Methods.
    Zhao Y; Ng HT; Peverati R; Truhlar DG
    J Chem Theory Comput; 2012 Aug; 8(8):2824-34. PubMed ID: 26592123
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How Do DFT-DCP, DFT-NL, and DFT-D3 Compare for the Description of London-Dispersion Effects in Conformers and General Thermochemistry?
    Goerigk L
    J Chem Theory Comput; 2014 Mar; 10(3):968-80. PubMed ID: 26580176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spin-Component-Scaled Double-Hybrid Density Functionals with Nonlocal van der Waals Correlations for Noncovalent Interactions.
    Yu F
    J Chem Theory Comput; 2014 Oct; 10(10):4400-7. PubMed ID: 26588137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions.
    Zhao Y; Truhlar DG
    J Chem Phys; 2006 Nov; 125(19):194101. PubMed ID: 17129083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Survival of the most transferable at the top of Jacob's ladder: Defining and testing the ωB97M(2) double hybrid density functional.
    Mardirossian N; Head-Gordon M
    J Chem Phys; 2018 Jun; 148(24):241736. PubMed ID: 29960332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Performance of Density Functionals for Sulfate-Water Clusters.
    Mardirossian N; Lambrecht DS; McCaslin L; Xantheas SS; Head-Gordon M
    J Chem Theory Comput; 2013 Mar; 9(3):1368-80. PubMed ID: 26587599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Semiempirical hybrid density functional with perturbative second-order correlation.
    Grimme S
    J Chem Phys; 2006 Jan; 124(3):034108. PubMed ID: 16438568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of Recent BLYP- and PBE-Based Range-Separated Double-Hybrid Density Functional Approximations for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions.
    Najibi A; Casanova-Páez M; Goerigk L
    J Phys Chem A; 2021 May; 125(18):4026-4035. PubMed ID: 33938224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Semi-empirical or non-empirical double-hybrid density functionals: which are more robust?
    Mehta N; Casanova-Páez M; Goerigk L
    Phys Chem Chem Phys; 2018 Sep; 20(36):23175-23194. PubMed ID: 30062343
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance of the van der Waals Density Functional VV10 and (hybrid)GGA Variants for Thermochemistry and Noncovalent Interactions.
    Hujo W; Grimme S
    J Chem Theory Comput; 2011 Dec; 7(12):3866-71. PubMed ID: 26598333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Minimally Empirical Double-Hybrid Functionals Trained against the GMTKN55 Database: revDSD-PBEP86-D4, revDOD-PBE-D4, and DOD-SCAN-D4.
    Santra G; Sylvetsky N; Martin JML
    J Phys Chem A; 2019 Jun; 123(24):5129-5143. PubMed ID: 31136709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Construction of a Spin-Component Scaled Dual-Hybrid Random Phase Approximation.
    Mezei PD; Csonka GI; Ruzsinszky A; Kállay M
    J Chem Theory Comput; 2017 Feb; 13(2):796-803. PubMed ID: 28052197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonlocal van der Waals Approach Merged with Double-Hybrid Density Functionals: Toward the Accurate Treatment of Noncovalent Interactions.
    Aragó J; Ortí E; Sancho-García JC
    J Chem Theory Comput; 2013 Aug; 9(8):3437-43. PubMed ID: 26584099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Double-hybrid density functionals free of dispersion and counterpoise corrections for non-covalent interactions.
    Yu F
    J Phys Chem A; 2014 May; 118(17):3175-82. PubMed ID: 24720397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-range corrected double-hybrid density functionals.
    Chai JD; Head-Gordon M
    J Chem Phys; 2009 Nov; 131(17):174105. PubMed ID: 19894996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dispersion Interactions with Density-Functional Theory: Benchmarking Semiempirical and Interatomic Pairwise Corrected Density Functionals.
    Marom N; Tkatchenko A; Rossi M; Gobre VV; Hod O; Scheffler M; Kronik L
    J Chem Theory Comput; 2011 Dec; 7(12):3944-51. PubMed ID: 26598340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance of Density Functional Theory for Second Row (4d) Transition Metal Thermochemistry.
    Laury ML; Wilson AK
    J Chem Theory Comput; 2013 Sep; 9(9):3939-46. PubMed ID: 26592389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry.
    Furche F; Perdew JP
    J Chem Phys; 2006 Jan; 124(4):044103. PubMed ID: 16460145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.