These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26596167)

  • 1. A Classical Potential to Model the Adsorption of Biological Molecules on Oxidized Titanium Surfaces.
    Schneider J; Ciacchi LC
    J Chem Theory Comput; 2011 Feb; 7(2):473-84. PubMed ID: 26596167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water on titanium dioxide surface: a revisiting by reactive molecular dynamics simulations.
    Huang L; Gubbins KE; Li L; Lu X
    Langmuir; 2014 Dec; 30(49):14832-40. PubMed ID: 25423593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of aqueous environment and surface defects on Arg-Gly-Asp peptide adsorption on titanium oxide surfaces investigated by molecular dynamics simulation.
    Zhang HP; Lu X; Leng Y; Watari F; Weng J; Feng B; Qu S
    J Biomed Mater Res A; 2011 Feb; 96(2):466-76. PubMed ID: 21171166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantum mechanical study of water adsorption on the (110) surfaces of rutile SnO₂ and TiO₂: investigating the effects of intermolecular interactions using hybrid-exchange density functional theory.
    Patel M; Sanches FF; Mallia G; Harrison NM
    Phys Chem Chem Phys; 2014 Oct; 16(39):21002-15. PubMed ID: 24979063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilayer adsorption of water at a rutile TiO2)(110) surface: towards a realistic modeling by molecular dynamics.
    Kornherr A; Vogtenhuber D; Ruckenbauer M; Podloucky R; Zifferer G
    J Chem Phys; 2004 Aug; 121(8):3722-6. PubMed ID: 15303939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RGD tripeptide onto perfect and grooved rutile surfaces in aqueous solution: adsorption behaviors and dynamics.
    Chen M; Wu C; Song D; Li K
    Phys Chem Chem Phys; 2010 Jan; 12(2):406-15. PubMed ID: 20023818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ control of the oxide layer on thermally evaporated titanium and lysozyme adsorption by means of electrochemical quartz crystal microbalance with dissipation.
    Van De Keere I; Svedhem S; Högberg H; Vereecken J; Kasemo B; Hubin A
    ACS Appl Mater Interfaces; 2009 Feb; 1(2):301-10. PubMed ID: 20353217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of peptide-surface interactions.
    Raut VP; Agashe MA; Stuart SJ; Latour RA
    Langmuir; 2005 Feb; 21(4):1629-39. PubMed ID: 15697318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling molecule-surface interactions--an automated quantum-classical approach using a genetic algorithm.
    Herbers CR; Johnston K; van der Vegt NF
    Phys Chem Chem Phys; 2011 Jun; 13(22):10577-83. PubMed ID: 21594260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomolecular adsorption at aqueous silver interfaces: first-principles calculations, polarizable force-field simulations, and comparisons with gold.
    Hughes ZE; Wright LB; Walsh TR
    Langmuir; 2013 Oct; 29(43):13217-29. PubMed ID: 24079907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A charge optimized many-body (COMB) potential for titanium and titania.
    Cheng YT; Shan TR; Liang T; Behera RK; Phillpot SR; Sinnott SB
    J Phys Condens Matter; 2014 Aug; 26(31):315007. PubMed ID: 24943265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of tripeptide RGD on rutile TiO(2) nanotopography surface in aqueous solution.
    Song DP; Chen MJ; Liang YC; Bai QS; Chen JX; Zheng XF
    Acta Biomater; 2010 Feb; 6(2):684-94. PubMed ID: 19643209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catechol and HCl Adsorption on TiO2(110) in Vacuum and at the Water-TiO2 Interface.
    Kristoffersen HH; Shea JE; Metiu H
    J Phys Chem Lett; 2015 Jun; 6(12):2277-81. PubMed ID: 26266604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of lipid adsorption on TiO2 surfaces in solution.
    Fortunelli A; Monti S
    Langmuir; 2008 Sep; 24(18):10145-54. PubMed ID: 18712891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption and dissociation of NH3 on clean and hydroxylated TiO2 rutile (110) surfaces: a computational study.
    Chang JG; Chen HT; Ju SP; Chang CS; Weng MH
    J Comput Chem; 2011 Apr; 32(6):1101-12. PubMed ID: 21387336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface protonation at the rutile (110) interface: explicit incorporation of solvation structure within the refined MUSIC model framework.
    Machesky ML; Predota M; Wesolowski DJ; Vlcek L; Cummings PT; Rosenqvist J; Ridley MK; Kubicki JD; Bandura AV; Kumar N; Sofo JO
    Langmuir; 2008 Nov; 24(21):12331-9. PubMed ID: 18842061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of fibronectin adsorption on TiO2 surfaces.
    Sousa SR; Brás MM; Moradas-Ferreira P; Barbosa MA
    Langmuir; 2007 Jun; 23(13):7046-54. PubMed ID: 17508764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of the wetting behaviors on a rutile TiO
    Fatemi SM; Fatemi SJ
    J Mol Graph Model; 2022 May; 112():108123. PubMed ID: 35074708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarizable Site Charge Model at Liquid/Solid Interfaces for Describing Surface Polarity: Application to Structure and Molecular Dynamics of Water/Rutile TiO2(110) Interface.
    Nakamura H; Ohto T; Nagata Y
    J Chem Theory Comput; 2013 Feb; 9(2):1193-201. PubMed ID: 26588762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a classical force field for the oxidized Si surface: application to hydrophilic wafer bonding.
    Cole DJ; Payne MC; Csányi G; Spearing SM; Colombi Ciacchi L
    J Chem Phys; 2007 Nov; 127(20):204704. PubMed ID: 18052443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.