BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26596213)

  • 1. Modeling gene flow distribution within conventional fields and development of a simplified sampling method to quantify adventitious GM contents in maize.
    Melé E; Nadal A; Messeguer J; Melé-Messeguer M; Palaudelmàs M; Peñas G; Piferrer X; Capellades G; Serra J; Pla M
    Sci Rep; 2015 Nov; 5():17106. PubMed ID: 26596213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay.
    Galeano P; Debat CM; Ruibal F; Fraguas LF; Galván GA
    Environ Biosafety Res; 2010; 9(3):147-54. PubMed ID: 21975255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Definition and feasibility of isolation distances for transgenic maize cultivation.
    Sanvido O; Widmer F; Winzeler M; Streit B; Szerencsits E; Bigler F
    Transgenic Res; 2008 Jun; 17(3):317-35. PubMed ID: 17562214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of gene stacking on gene flow: the case of maize.
    Paul L; Angevin F; Collonnier C; Messéan A
    Transgenic Res; 2012 Apr; 21(2):243-56. PubMed ID: 21681483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of volunteers on maize gene flow.
    Palaudelmàs M; Peñas G; Melé E; Serra J; Salvia J; Pla M; Nadal A; Messeguer J
    Transgenic Res; 2009 Aug; 18(4):583-94. PubMed ID: 19225900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pollen-mediated gene flow in maize in real situations of coexistence.
    Messeguer J; Peñas G; Ballester J; Bas M; Serra J; Salvia J; Palaudelmàs M; Melé E
    Plant Biotechnol J; 2006 Nov; 4(6):633-45. PubMed ID: 17309734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the influence of field size on maize gene flow using SSR analysis.
    Palaudelmàs M; Melé E; Monfort A; Serra J; Salvia J; Messeguer J
    Transgenic Res; 2012 Jun; 21(3):471-83. PubMed ID: 21898271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pollen-Mediated Gene Flow in Maize: Implications for Isolation Requirements and Coexistence in Mexico, the Center of Origin of Maize.
    Baltazar BM; Castro Espinoza L; Espinoza Banda A; de la Fuente Martínez JM; Garzón Tiznado JA; González García J; Gutiérrez MA; Guzmán Rodríguez JL; Heredia Díaz O; Horak MJ; Madueño Martínez JI; Schapaugh AW; Stojšin D; Uribe Montes HR; Zavala García F
    PLoS One; 2015; 10(7):e0131549. PubMed ID: 26162097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distances needed to limit cross-fertilization between GM and conventional maize in Europe.
    Riesgo L; Areal FJ; Sanvido O; Rodríguez-Cerezo E
    Nat Biotechnol; 2010 Aug; 28(8):780-2. PubMed ID: 20697398
    [No Abstract]   [Full Text] [Related]  

  • 10. Air-mediated pollen flow from genetically modified to conventional crops.
    Kuparinen A; Schurr F; Tackenberg O; O'Hara RB
    Ecol Appl; 2007 Mar; 17(2):431-40. PubMed ID: 17489250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sampling and modeling for the quantification of adventitious genetically modified presence in maize.
    Allnutt TR; Dwyer M; McMillan J; Henry C; Langrell S
    J Agric Food Chem; 2008 May; 56(9):3232-7. PubMed ID: 18419127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of flowering time and distance between pollen source and recipient on maize.
    Nieh SC; Lin WS; Hsu YH; Shieh GJ; Kuo BJ
    GM Crops Food; 2014; 5(4):287-95. PubMed ID: 25523174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of real-time PCR based methods for quantification of pollen-mediated gene flow from GM to conventional maize in a field study.
    Pla M; La Paz JL; Peñas G; García N; Palaudelmàs M; Esteve T; Messeguer J; Melé E
    Transgenic Res; 2006 Apr; 15(2):219-28. PubMed ID: 16604462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The co-existence between transgenic and non-transgenic maize in the European Union: a focus on pollen flow and cross-fertilization.
    Devos Y; Reheul D; De Schrijver A
    Environ Biosafety Res; 2005; 4(2):71-87. PubMed ID: 16402663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meteorological input data requirements to predict cross-pollination of GMO maize with Lagrangian approaches.
    Lipsius K; Wilhelm R; Richter O; Schmalstieg KJ; Schiemann J
    Environ Biosafety Res; 2006; 5(3):151-68. PubMed ID: 17445511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollen-mediated gene flow and seed exchange in small-scale Zambian maize farming, implications for biosafety assessment.
    Bøhn T; Aheto DW; Mwangala FS; Fischer K; Bones IL; Simoloka C; Mbeule I; Schmidt G; Breckling B
    Sci Rep; 2016 Oct; 6():34483. PubMed ID: 27694819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness of different sampling schemes in predicting adventitious genetically modified maize content in a smallholder farming system.
    Jhong YS; Lin WS; Yiu TJ; Su YC; Kuo BJ
    GM Crops Food; 2021 Jan; 12(1):212-223. PubMed ID: 33300426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method to search for optimal field allocations of transgenic maize in the context of co-existence.
    Devos Y; Cougnon M; Thas O; Reheul D
    Environ Biosafety Res; 2008; 7(2):97-104. PubMed ID: 18549771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Literature review of the dispersal of transgenes from genetically modified maize].
    Ricroch A; Bergé JB; Messéan A
    C R Biol; 2009 Oct; 332(10):861-75. PubMed ID: 19819407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of wind direction on cross-pollination in wind-pollinated GM crops.
    Hoyle M; Cresswell JE
    Ecol Appl; 2007 Jun; 17(4):1234-43. PubMed ID: 17555231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.