These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26596239)

  • 1. Single-molecule enzymology of steroid transforming enzymes: Transient kinetic studies and what they tell us.
    Penning TM
    J Steroid Biochem Mol Biol; 2016 Jul; 161():5-12. PubMed ID: 26596239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rate-determining steps of aldo-keto reductases (AKRs), a study on human steroid 5β-reductase (AKR1D1).
    Chen M; Jin Y; Penning TM
    Chem Biol Interact; 2015 Jun; 234():360-5. PubMed ID: 25500266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereospecific reduction of 5β-reduced steroids by human ketosteroid reductases of the AKR (aldo-keto reductase) superfamily: role of AKR1C1-AKR1C4 in the metabolism of testosterone and progesterone via the 5β-reductase pathway.
    Jin Y; Mesaros AC; Blair IA; Penning TM
    Biochem J; 2011 Jul; 437(1):53-61. PubMed ID: 21521174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alanine scanning mutagenesis of the testosterone binding site of rat 3 alpha-hydroxysteroid dehydrogenase demonstrates contact residues influence the rate-determining step.
    Heredia VV; Cooper WC; Kruger RG; Jin Y; Penning TM
    Biochemistry; 2004 May; 43(19):5832-41. PubMed ID: 15134457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rate of steroid double-bond reduction catalysed by the human steroid 5β-reductase (AKR1D1) is sensitive to steroid structure: implications for steroid metabolism and bile acid synthesis.
    Jin Y; Chen M; Penning TM
    Biochem J; 2014 Aug; 462(1):163-71. PubMed ID: 24894951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism.
    Rižner TL; Penning TM
    Steroids; 2014 Jan; 79():49-63. PubMed ID: 24189185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The aldo-keto reductases (AKRs): Overview.
    Penning TM
    Chem Biol Interact; 2015 Jun; 234():236-46. PubMed ID: 25304492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of 3 alpha-hydroxysteroid dehydrogenase reveals a "push-pull" mechanism for proton transfer in aldo-keto reductases.
    Schlegel BP; Jez JM; Penning TM
    Biochemistry; 1998 Mar; 37(10):3538-48. PubMed ID: 9521675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering steroid 5 beta-reductase activity into rat liver 3 alpha-hydroxysteroid dehydrogenase.
    Jez JM; Penning TM
    Biochemistry; 1998 Jul; 37(27):9695-703. PubMed ID: 9657682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The arginine 276 anchor for NADP(H) dictates fluorescence kinetic transients in 3 alpha-hydroxysteroid dehydrogenase, a representative aldo-keto reductase.
    Ratnam K; Ma H; Penning TM
    Biochemistry; 1999 Jun; 38(24):7856-64. PubMed ID: 10387026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple steps determine the overall rate of the reduction of 5alpha-dihydrotestosterone catalyzed by human type 3 3alpha-hydroxysteroid dehydrogenase: implications for the elimination of androgens.
    Jin Y; Penning TM
    Biochemistry; 2006 Oct; 45(43):13054-63. PubMed ID: 17059222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinaldehyde is a substrate for human aldo-keto reductases of the 1C subfamily.
    Ruiz FX; Porté S; Gallego O; Moro A; Ardèvol A; Del Río-Espínola A; Rovira C; Farrés J; Parés X
    Biochem J; 2011 Dec; 440(3):335-44. PubMed ID: 21851338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse 17alpha-hydroxysteroid dehydrogenase (AKR1C21) binds steroids differently from other aldo-keto reductases: identification and characterization of amino acid residues critical for substrate binding.
    Faucher F; Cantin L; Pereira de Jésus-Tran K; Lemieux M; Luu-The V; Labrie F; Breton R
    J Mol Biol; 2007 Jun; 369(2):525-40. PubMed ID: 17442338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of the physiological interconversion of 5alpha-DHT and 3alpha-diol by rat 3alpha-HSD via transient kinetics shows that the chemical step is rate-determining: effect of mutating cofactor and substrate-binding pocket residues on catalysis.
    Heredia VV; Penning TM
    Biochemistry; 2004 Sep; 43(38):12028-37. PubMed ID: 15379543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and Functional Biology of Aldo-Keto Reductase Steroid-Transforming Enzymes.
    Penning TM; Wangtrakuldee P; Auchus RJ
    Endocr Rev; 2019 Apr; 40(2):447-475. PubMed ID: 30137266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human and murine steroid 5β-reductases (AKR1D1 and AKR1D4): insights into the role of the catalytic glutamic acid.
    Chen M; Wangtrakuldee P; Zang T; Duan L; Gathercole LL; Tomlinson JW; Penning TM
    Chem Biol Interact; 2019 May; 305():163-170. PubMed ID: 30928400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-Depth Dissection of the P133R Mutation in Steroid 5β-Reductase (AKR1D1): A Molecular Basis of Bile Acid Deficiency.
    Chen M; Jin Y; Penning TM
    Biochemistry; 2015 Oct; 54(41):6343-51. PubMed ID: 26418565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of human Delta4-3-ketosteroid 5beta-reductase (AKR1D1) reveal the presence of an alternative binding site responsible for substrate inhibition.
    Faucher F; Cantin L; Luu-The V; Labrie F; Breton R
    Biochemistry; 2008 Dec; 47(51):13537-46. PubMed ID: 19075558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.